Strategies of packet buffering inside Routers

Rafal Jan Szarecki #JNCIE136 Solution Architect, Juniper Networks

Why should I care?

- Under load, Your router's discard behavior according to queuing strategy selected by vendor.
 - Could be quite unintuitive!
 - Better to know, how to live/deal with this artificial "intelligence". And turn it for your benefit.
 - Do not troubleshoot if there is nothing unexpected/misbehaving.

How it manifest

- Something is going on
 - SLA monitoring system rise alarm
 - Customer calls and complains
- Which node in network cause it?
 - You may need go node-by node.
 - Other expert/analitic systems my help.
 - Out of scope
- When guilty node is nail down ...

Unintuitive behavior

Defect (bug) or expected behavior?

Queuing != QoS

 Queuing goal – avoid traffic/ packet drops during temporal congestion

- QoS goal provide differential treatment and separation among traffic of different classes.
 - Avoid traffic/packet drops during temporal congestion in some classes at expenses of losses in other.
 - Re-order packets in a way to deliver data of some classes as fast as possible.

This talk is not on QoS.

We will look at best-effort only

Router anatomy

PFE – a CPU, NPU or ASIC that process packet

The MUX

N x Rx rate <= 1 x Tx rate

- Multiple low-speed
 In (Rx) port and
- Single high-speed
 Out (Tx) interfaces
- Many to One
- No congestion risk –
 no need for buffer

The de-mux

Rx rate == N x Tx rate

- Simple model
- High-speed In (Rx) port and
- Multiple lower-speed
 Out (Tx) interfaces
- One to many

 1 Rx to 1 Tx @ same time → Congestion.

Queuing architectures for de-mux

- Simple Output
 Queuing OQ
- Usually implemented

 in single (shared)

 memory

The (asynchronous) switch fabric

Rx rate == Tx rate

- N x In (Rx) and N x Out (Tx) port of switch of same speed
- Any to Any
- Each ingress port is independent
 - Traffic/datagram may appear at any time
 - Not aware about egress port state
- N Rx to 1 Tx @ same time
 → Congestion.

Queuing architectures for switch fabric

 Output Queuing – OQ – not used due to technological limitations.

Input Queuing – IQ

Virtual Output Queuing - VOQ

IQ

- <100% efficiency
- Queue fan-out need to be over 2 x desired port traffic to get 99%+ efficiency

IQ Flow-control

- Asynchronous each egress is independent
- Ingress PFE sends Request
 - Each has data size
 - Only for packet at head of queue
 - egress PFE answer w/ Grant when egress Fabric port is free
 - Egress schedules grants
 - Prevent starvation
 - E.g. RoundRobin or fairshare

VOQ

- Variant Input Queuing "dedicated Input queue for each output port"
 - No need for over-speed
 - Flow-Control and scheduling
 - Extension to IQ
 - Ingress PFE can send requests to multiple egresses simultaneously

VOQ

- Variant Input Queuing "dedicated Input queue for each output port"
 - No need for over-speed
 - Flow-Control and scheduling
 - Extension to IQ
 - Ingress PFE can send grants to multiple egresses simultaneously

VOQ

- Variant Input Queuing "dedicated Input queue for each output port"
 - No need for over-speed
 - Flow-Control and scheduling
 - Extension to IQ
 - Ingress PFE can send grants to multiple egresses simultaneously
- No HoL blocking

The router

- Multistage
 - Ingress mux to fabric
 - No congestion
 - Fabric switch
 - Egress demux to ports

- hiSpeed (fab) to low speed port
- Congestion points
 - Fabric-out (many → one)
 - Egress mux (fast → slow)
 - Need queuing

Two approaches

Buffer twice – CIOQ systems

Combined Input Output Queuing

- Buffer before fabric; de-queue when fabric egress port is available (empty) – fabric VOQ (or IQ)
- Buffer before egress interface; dequeue when interface is available (empty) – OQ
- Simpler to Implement
- Higher scalability [O(n)]
- Requires more memory
 - Space (size)
 - 2 x bandwidth
- Bigger system residency time and Jitter

Buffer Once - VOQ systems

Virtual Output Queuing

 Buffer before fabric;
 De-queue when all way down to egress interface is available (empty) – end-toend system VOQ

- Requires a lot of queues complex queue management @ scale [O(n²)]
- Requires less memory
 - Space (size)
 - 1 x bandwidth
- Lower residency time (latency inside router)
- Lower power requirements

Buffer twice – latency

Wait, there will be example

Max latency: Σ (VOQ size, OQ size)

Buffer twice – bandwidth Fabric Scheduler and flow-control

- Which ingress PFE get GRANT next. (e.g. fairshare) from given egress PFE
- Monitor Fabric Egress and stop giving GR from queue on Fabric ingress that suppose to egress fabric via congested port
- Packet received from Fabric are
 - stored in egress port output queue.
 - Or dropped if queue is full.
- Fabric queuing and flow-control independent form egress port queuing and scheduling.
- Router behavior residency time (latency), jitter, drop rate depends on both.

End-to-End VOQ system

- For queuing purpose, switch fabric and all de-mux seen as single switch
 - N inputs (Rx) → M output (Tx)
 - N x Rx speed == M x Tx speed
 - $M \gg N;$

Buffer once - latency

Max: VOQ size

congestion appears)

- Min: VOQ size

• Max latency: Σ (VOQ size)

Wait, there will be example

Buffer once – bandwidth Fabric Scheduler and flow-control

- Fabric Queuing VOQ (per egress interface)
- Fabric scheduler and Flow-Control
 - Which ingress [PFE, VOQ] get GRANT next. (e.g. fairshare) from given egress PFF
 - Monitor egress interface and stop giving GR from queue on Fabric ingress if egress interface is not free
 - Packet received from Fabric is immediately send out by egress interface

Fabric queuing and flow-control depends on egress interface only.

System characteristic vs. Queuing architecture

	CIOQ	CIOQ (w/ fabric VOQ)	E2E VOQ
Low residency time	×	×	V
High load	×	✓	~
Low power footprint	×	×	V
High number of interfaces (each with independent queuing. E.g. BNG, BE)	✓	✓	*
multi-chassis systems	✓	✓	V
Examples*	C7500, Early C7600	Juniper MX, Cisco ASR9k, CRS-X ALU 7750/7950*	Juniper PTX Cisco NCS600

^{*} Please contact me if you want to update, correct add more - rafal@juniper.net

UNINTUITIVE BEHAVIOR - BANDWIDTH

Intuitive drop behavior

All traffic is BE

F1 – F5	600/700 → 86% loss expected
F6 Y	
100GE	

	Intuitive (loss)?		Observed 2 (router X)		Observed 2 (router Y)	
	Gbps	Loss %	Gbps	Loss %	Gbps	Loss %
F1	21	86%				
F2	7	86%				
F3	29	86%				
F4	14	86%				
F5	29	86%				
F6	1	0%				

Un-intuitive drop behavior of router "X"

•	ΑII	traffic	is BE
	,		

- Why losses in F6?
- Why unequal losses in F1-F6

	Intuitive (loss)?		Observed 2 (router X)			
	Gbps	Loss %	Gbps	Loss %	Gbps	Loss %
F1	21	86%	25	82%		
F2	7	86%	8	82%		
F3	29	86%	22	88%		
F4	14	86%	11	88%		
F5	29	86%	33	83%		
F6	1	0%	0	52%		

Un-intuitive drop behavior of router "Y"

100GE

•	ΔΙΙ	traffic is BE
•	AII	ti aiiit is bl

- Why losses in F6?
- Why unequal losses in F1-**F6**
- No losses in F6 on router Y

	Intuitive (loss)?		Observed 2 (router X)		Observed 2 (router Y)	
	Gbps	Loss %	Gbps	Loss %	Gbps	Loss %
F1	21	86%	25	82%	26	83%
F2	7	86%	8	82%	9	83%
F3	29	86%	22	88%	22	89%
F4	14	86%	11	88%	11	89%
F5	29	86%	33	83%	33	84%
F6	1	0%	0	52%	1	0%

Know your hardware

- Router X -> CIOQ
- Router Y -> VOQ
- Fabric port -> 300Gbps
- Fair-share fabric scheduler

Router X – CIOQ - behavior

- Flow F1&F2 shares same buffer (queue) on PFE1. Same for F3&F4
 @ PFE2 and for F5&F6 @ PFE3
- There is 3 ingress PFE that want to talk to PFE4
 - Fabric Scheduling gives 100Gbps to each ingress PFE

	offered	From fabric @ PFE4		On egress ir	nterface
	Gbps	Gbps	Fabric Loss % (F_loss)	Gbps	Cumulative Loss %
F1	150	75	50%		
F2	50	₂₅ ∫ 100G	50%		
F3	200	67	67%		
F4	100	33 1 100G	67%		
F5	200	95.2	52%		
F6	10	4.8 1 100G	52%		

Router X – CIOQ - behavior

- Flows F1 F5 (295Gbps) are queued in OQ of IF1, and Tx @ 100Gbps.
 (65% loss Egress interface loss; E-loss)
- Flows F6 (10Gbps) are queued in OQ of IF2, and tx @ 100Gbps. (0% loss)

Cumulative loss for F1-F5: F_loss + (1-F_loss)*E_loss

	offered	From fabr	ic @ PFE4	On egress ir	nterface
	Gbps	Gbps	Fabric Loss % (F_loss)	Gbps	Cumulative Loss %
F1	150	75	50%	25	82%
F2	50	₂₅ ∫ 100G	50%	8	82%
F3	200	67	67%	22	88%
F4	100	33 1 100G	67%	11	88%
F5	200	95.2	52%	33	83%
F6	10	4.8 1 00G	52%	4.8	52%

CLI example

```
PFE 3
NPC3(eab\ sol-eng-be-mx480-2 vty)# sh cos halp fabric
                                                                      Destination PFE
queue-sta
                                                                           (PFE4)
PFE index: 3 CCHIP 0 Low prio Queue: 4
Queued
  Packets
                          4734895792
                                               62812 pps
                                                                          201 Gbps
  Bytes
                       5734975634075
                                            25125000 Bps
Transmitted
  Packets
                                               31406 pps
                                            12562500 Bps
  Bytes
  Tail-dropped pkts:
                                               31406 pps
  Tail-dropped bytes:
                                    0
                                            12562500 Bps
                                                                          50% loss
[...]
```

Router Y – VOQ - behavior

- Flow F1&F2 shares same buffer (queue) on PFE1. Same for F3&F4 @ PFE2 and for F5 @ PFE3.
- Flow F6 has separate buffer on PFE 3.
- There is 3 ingress PFE that want to talk to egress interface IF1 (100GE)
 - Fabric Scheduling gives 33Gbps to each ingress PFE for Egress Interface IF1 VOQ

	offered	From fabric @ PFE4		On egress in	nterface
	Gbps	Gbps	Fabric Loss % (F_loss)	Gbps	Cumulative Loss %
F1	150	25	83%		
F2	50	8 J 33G	83%		
F3	200	22	89%		
F4	100	11 33G	89%		
F5	200	33 } 33G	83%		
F6	10	10 } 100G	0%		

Router Y – VOQ - behavior

- There is 1 ingress PFE that want to talk to egress interface IF2 (100GE)
 - Fabric Scheduling gives 100Gbps to only one ingress PFE (PFE3) for Egress Interface IF2 VOQ
- F6 do not consume it's share in full. Only 10Gbps.

Cumulative loss for F1-F5: F_loss

	offered	From fabric @ PFE4		On egress ir	nterface
	Gbps	Gbps	Fabric Loss % (F_loss)	Gbps	Cumulative Loss %
F1	150	25	83%	25	83%
F2	50	8 ∫ 33G	83%	8	83%
F3	200	22	89%	22	89%
F4	100	₁₁ 33G	89%	11	89%
F5	200	33 } 33G	83%	33	83%
F6	10	10 } 100G	0%	10	0%

CLI example

Ingress PFE 3 (200Gbps toward egress interface)

VOQ of egress IF (100GE)

SNGFPC1(Thorax-re0 vty)# debug cos halp qlen tq 3 voq 2048 <snip>

VOQ| AQID| qlen| qlenold| tabw| ntabw|
maxrate(Mbps)| DBB Time(us)|

560| 29771| 2752| 2304| 64| 14|

1613| 111813|

Number of Samples Collected = 1 Parm | Min| Avg | Max I glen | 2752| 2752| 2752| tabw | 641 64 l 64 l ntabw 141 14 I 14| qdrain| 330001 330001 330001 259387 | 259387 | 259387 FreePg UM 01 0

33Gbps drain-rate

Accept your router personality

- Behavior is clear now

 - caused

 by Fabric scheduler
 - Non of vendor (AFAIK) allows for Fabric scheduler tuning.
 - Have to live with it as it is.

Mitigation: Load PFE fairly

- you get fair results among all flows
- Other goodies behind blast radius

ROUTER BEHAVIOR CASE STUDY - LATENCY

Intuitive latency

400Gbps --> 100Gbps Buffer 100% -> 100ms latency And 75% losses

	Expected (loss)?	Observed 1 (router X)	Observed 2 (router Y)
	ms	ms	ms
F1	100	200	100
F2	100	200	100
F3	100	100	100

Know your hardware

- Router X -> ClOQ
 - 100ms VoQ before fabric
 - 100ms OQ
- Router Y -> VOQ
 - 100ms VoQ before fabric
- Fabric port -> 300Gbps

Router X - CIOQ

- Flow F1&F2 shares same VoQ buffer (queue) on PFE1. Flow F3 is alone on PFE2
- There is 2 ingress PFE that want to talk to PFE4
 - Fabric Scheduling guarantee 150Gbps to each ingress PFE
- Flows F1-F2 (300Gbps) are queued in VOQ of PFE1, and Tx @ 200Gbps (150Gbps + leftover).

Latency is 100ms

	offered	Fabric component	Egress Interface	Total
	Gbps	ms		
F1	200	100 (33% loss)		
F2	100	100 (33% loss)		
F3	100			

Router X - CIOQ

- Flows F3 (100Gbps) are queued in VOQ of PFE1, and Tx @
 100Gbps → no buffering
- Flows F1-F3 (300Gbps) are queued in OQ of IF1, and Tx @ 100Gbps.

Egress interface latency is 100ms

	offered	Fabric component	Egress Interface	Total
	Gbps	ms	Ms	ms
F1	200	100 (33% loss)	100 (66% loss)	200 (77% loss)
F2	100	100 (33% loss)	100 (66% loss)	200 (77% loss)
F3	100	0 (0% loss)	100 (66% loss)	100 (66%)

Router Y - VOQ

- Flow F1&F2 shares same
 VoQ buffer (queue) on PFE1.
 Flow F3 is alone on PFE2
- There is 2 ingress PFE that want to talk to PFE4
 - Fabric Scheduling guarantee
 50Gbps to each ingress PFE

	offered	Fabric component	Egress Interface	Total
	Gbps	ms	ms	sm
F1	200	100		
F2	100	100		
F3	100	100		

Router Y - VOQ

 Flows F1-F2 (300Gbps) are queued in VOQ of IF1, and Tx @ 50Gbps.

Latency is 100ms

Flows F3 (100Gbps) are queued in VOQ of IF1, and Tx
 @ 50Gbps
 Latency is 100ms

	offered	Fabric component	Egress Interface	Total
	Gbps	ms	ms	sm
F1	200	100 (83% loss)	0	100 (83% loss)
F2	100	100 (83% loss)	0	100 (83% loss)
F3	100	100 (50% loss)	0	100 (50% loss)

Other surprising behavior – router W

All traffic is BE

	Observed on egress		
	Gbps	Loss %	
F1	33	67%	
F2	50	50%	
F3	100	0%	
F4	33	67%	
F5	25	75%	
F6	33	67%	
F7	25	75%	

Homework

- What Queuing architecture router W is?
- Explain behavior.

- Answers: <u>rafal@juniper.net</u>
 - Deadline 11pm today.

Summary

- Know your router anatomy
- System queuing architecture impacts power consumption and system scaling capabilities.
- System queuing architecture impact residencytime
- System queuing architecture may be a reasoned for non-intuitive traffic loss pattern.
 - (Re)Assign ports to roles smart way.
 - Trying to solve of non-existing problem cost time and headache of writing a incident report – avoid it.

Tank you!

BACKUP SLIDES.

From building blocks to centralized router

- Single switching element
- No Switch Fabric
- N x N Interfaces
- Interfaces may have different speeds
- Memory used to build egress interface queues
- Different memory options
 - On-chip shared by mux and de-mux
 - Very fast (SRAM) ~10Tbps+
 - Small and costly (10's MB)
 - Off-chip shared by mux and de-mux
 - Deep queues/buffers (GB)
 - Slower (DRAM) ~1Tbps
 - Off-chip memory limits PFE performance.

Combined Input Output Queuing

IQ requairments for loss-less: Fabric Port speed >> Σ (ASIC egress interfaces)

OQ

- Fabric switch is not a really switch here.
- Need very high speed (N x) fan-in to buffer.
 - If switch port is 600Gbps,
 and we have 100 ports →
 - 60T of raw bandwidth into buffers!
- 100% efficiency
- Good on paper only
 - extremely expensive
 - Bound by technology

Buffer once – per egress interface VOQ Theory vs. practice

Data in VOQ

- In stat-mux system it is unpredictable when egress interface becomes free.
- Grant signaling delay affect deficiency
- Need for shallow buffer after fabric (egress PFE) to compensate delay.
 - Need just ~10 usec.
- Similar to CIOQ but:
 - Fabric flow-control ensure that OQ never overflow.
 - Try to keep IQ always full, never empty (if data are in VOQ)
 - Egress interface free/busy indirectly controls fabric flow-control

Buffer once – per egress interface VOQ
Theory vs. practice

Data in VOQ

- In stat-mux system it is unpredictable when egress interface becomes free.
- Grant signaling delay affect deficiency
- Need for shallow buffer after fabric (egress PFE) to compensate delay.
 - Need just ~10 usec.
- Similar to CIOQ but:
 - Fabric flow-control ensure that OQ never overflow.
 - Try to keep IQ always full, never empty (if data are in VOQ)
 - Egress interface free/busy indirectly controls fabric flow-control

Too shallow shallow output buffer

- Latency
 - 3 x fabric one-way latency is worst case (RQ-GR-DATA)
 - RQ scheduler on egress
 - GR scheduler on ingress
- RQ latency
 - Can't be compensated
 - Statistically minor problem asynchronous. RQ could be send while egress interface handles other data
- RQ/GR scheduler Can't be compensated
- If shallow buffer < 2x latency inefficient egress IF utilization

Impact on PFE design

PFE complexity

- PFE for per-egress IF VOQ system != PFE for CIOQ system
- For system of 4k IF and 8 QoS Classes
 - VOQ PFE need support 32.000 queues
 - CIOQ PFE need 1.040 queues
- If PFE support 400k queues
 - VOQ system can support 50k IF
 - CIOQ system can support 1.000.000's IF (from queue scaling perspective only. Other limits apply)
- CIOQ PFE has typically less queues but much more of other functionalities.

PFE performance

- To handle 4 x 100GE interfaces, PFE need:
 - CIOQ:
 - more then 3.6Tbps of PFE I/O.
 - All packet goes to and from memory twice – 4 memory accesses.
 - VOQ
 - more then 2.4Tbps (25% less)of PFE.
 - All packet goes to and from memory once – 2 memory accesses.
 - Memory I/O BW need to be oversized - even better reduction (~30%)
 - Each memory access causes latency
- Less I/O == saved gates
 - Have more VOQ (bigger system), OR
 - lower cost and power, OR
 - higher performance, OR

CoS vs. Queuing

- Queuing as discussed so fare
 - manage congestion/overload
 - Assumes all traffic is same class
- CoS
 - Traffic has different classes
 - Each class need other treatment
- CoS + Queueing = QoS
 - Scheduler(s) take into account 2 things
 - Class of traffic
 - Source instance (e.g. ingress PFE)
 - What was 1 Queue becomes set of parallel queues.
 - Classifier needed -> put traffic to this or other queue (out of scope)

PFE complexity

- PFE for per-egress IF VOQ system != PFE for CIOQ system
- For system of 4k IF and 8 QoS Classes
 - VOQ PFE need support 32.000 queues
 - CIOQ PFE need 1.040 queues
- If PFE support 400k queues
 - VOQ system can support 50k IF
 - ClOQ system can support 1.000.000's IF (from queue scaling perspective only. Other limits apply)
- CIOQ PFE has typically less queues but much more of other functionalities.

CIOQ- Fabric

- CIOQ
- Fabric VOQ
 - Flow-Controll
 - per Fabric Egress
 - By Request Grant protocols.
 - Do not depends on Egress interfaces and OQ state.
 - 2 Classes Hi-/Low- priority
 - classification
 - Scheduling
 - ingress PFE fairness 1st
 - CIR-bound Priority scheduling.
 - Delay Bandwidth Buffer:
- Scheduler logic seats on egress PFE; Memory is on ingress side of fabric.

CIOQ – Egress Interface

- CIOQ
- Egress (logical) Interface Queues
 - 8 Queues per (logical) Interface
 - 10M queues per system
 - Scheduling
 - 5 priorities level, 4 RED profiles per queue. Configurable.
 - 2 or 4 scheduling hierarchy level w/ priority propagation
 - Delay Bandwidth Buffer: _____
- Scheduler logic and Memory seats on egress PFE

VOQ – integrated scheduler

- Flow-Control
 - per egress (logical) interface
 - By Request Grant protocols.
 - Depends on Egress interfaces OQs (Output Queues) state.
- Queues
 - 8 per egress (logical) interface
 - 390.000 per system (HW limit)
- Scheduling
 - 4 priorities level, 4 RED profiles per queue.
 Configurable.
 - 2 or 3 scheduling hierarchy level w/ priority propagation
- Delay Bandwidth Buffer:
 - Shared memory
 - 100ms upper bound
 - 40ms worst case.
- Scheduler logic seats on egress PFE; Memory is on ingress side of fabric

SWITCH