
Tradeoffs in Network Complexity

Tradeoffs in Network Complexity
• Defining Complexity
• Measuring Complexity
• Complexity Tradeoff
• Fast Reroute as an Example
• Whither Complexity?

Defining Complexity

Network Complexity Index
• Breaks a network up into

communities
• The interaction of the

communities is calculated to
provide a network complexity
index

• Based on
 Number of nodes
 Degree of nodes
 Number of edges
 Rate of change in nodes and

edges

A Network Complexity Index for Networks of Networks; Stuart Bailey and Robert L. Grossman

…where j ε [1, …, p]. B(N) is a
well-known statistic called the
H-index and is used commonly
in citation analysis [10]. The
formulation above of the H-
index in terms of a
maximization problem is due to
Glanzel [11].

NetComplex
• Computes complexity from

state and function

• Pits distributed against
centralized algorithms

• Makes note of aggregation
and other mechanisms

http://www.eecs.berkeley.edu/~sylvia/papers/netcomp.pdf

Our metric assigns equal importance to value and
transport dependencies. However, depending on the
system environment, this may not be the best choice…

Our metric treats all input or transport states as equally
important. However, sometime certain input or
transport states are more important (for correctness,
robustness, etc.) than others.

Our metric treats all inputs as independent which might
result in over-counting dependencies from correlated
inputs.

Design Intent

http://www.ietf.org/proceedings/85/slides/slides-85-ncrg-0.pdf

Where We Are
• There are some (good!) tools out there
 This research will only get better over time

• Each one focuses on a single part of the overall
problem
 Control plane state
 Configuration complexity

• Each one attempts to provide an absolute measure
in one specific area

• But systemic complexity isn’t absolute
 Complexity in one system interacts with complexity in

other systems

Network Complexity is Organized
• Organized complexity is

different than disorganized
complexity

• They are all problems which
involve dealing
simultaneously with a sizable
number of factors which are
interrelated into an organic
whole. They are all, in the
language here proposed,
problems of organized
complexity. –Weaver, 1948

Where We Are
• Statistics will be of limited use in this realm
 Statistics will tell you if there is information (Shannon),

but not what that information means
• We must interact with intent
Network design intends to solve specific problems
How can you measure intent?

Complexity Tradeoffs

Complexity verses the Problem
• Harder problems tend to require more complex
solutions
Complexity has no meaning outside the context of the

problem being solved
Nail verses screw verses screw+glue

• How many balloons fit in a bag?

Complexity verses the Toolset
• More complexity can be managed with better tools
 If your only tool is a hammer…

• But we need to figure in the cost of the tool
Nail guns are harder to maintain than hammers
 Sonic screwdrivers are notorious for breaking at just the

wrong moment

Complexity verses Skill Set
• Things that are complex for one person might
not be for another…
 This isn’t a (just) matter of intelligence, it’s also a

matter of focus and training

Complexity verses Complexity
• Complexity comes in pairs
 It is easier to move a problem around (for example, by

moving the problem to a different part of the overall
network architecture) than it is to solve it.
 It is always possible to add another level of indirection.
RFC1925

• Decreasing complexity in one part of the system
will (almost always) increase complexity in
another

Th
e

Co
m

pl
ex

ity
 G

ra
ph

Complexity

Counter-complexity

Sweet Spot

Simple!

Function

The Point
• You can never reach some other desirable
goal without increasing complexity
Decreasing complexity in one place will (nearly)

always increase it in another
Decreasing complexity in one place will often

lead to suboptimal behavior in another
 Increasing service levels or solving hard

problems will almost always increase complexity

You don’t have to have a point, to have a point…

The Goal
• Bad questions
 How complex is this?
Will this scale?

• Good questions
Where will adding this new thing increase complexity?
 If I reduce complexity here, where will I increase it?
 If I reduce complexity here, where will suboptimal

behavior show up?
• Complexity at the system level is about

tradeoffs, not absolutes

Fast Reroute as an Example

Precompute
• Router A uses the path through B as its

primary path to 192.0.2.0/24

• There is a path through C, but this path is
blocked by the control plane
 If A forwards traffic towards 192.0.2.0/24 to C,

there is at least some chance that traffic will
be reflected back to A, forming a routing loop

• We would like to be able to use C as an
alternate path in the case of a link failure
along A->B->E

192.0.2.0/24

A

B

C

D

E

Precompute: LFAs
• Loop Free Alternates (LFAs)
 A can compute the cost from C to determine if

traffic forwarded to 192.0.2.0/24 will, in fact, be
looped back to A
 If not, then A can install the path through C as a

backup path

• Gains
 Faster convergence

• Costs
 Additional computation at A (almost nil)
 Designing the network with LFAs in mind

192.0.2.0/24

A

B

C

D

E

Precompute: Tunneled LFAs
• Tunnel into Q
 A can compute the first hop beyond C where

traffic destined to 192.0.2.0/24 will not loop
back
 A then dynamically builds a tunnel through C

to this point and installs the tunnel interface
as a backup route
 There are a number of ways to do this
 NotVIA, MRT, Remote LFA, etc.
 Different computation and tunneling mechanisms,

but the general theory of operation is the same

192.0.2.0/24

A

B

C

D

E

Precompute: Tunneled LFAs
• Gains
 Relaxed network design rules (rings are okay)
 Eliminates microloops
 Faster convergence

• Costs
 Additional computation at A (almost nil)
 Some form of dynamic tunnel
 Additional control plane state
 Designing the network with alternate paths in

mind
 These mechanisms don’t support every possible

topology (but more than LFAs)
 Thinking about alternate traffic patterns to project link

overload, QoS requirements, etc.

192.0.2.0/24

A

B

C

D

E

Whither Complexity?

Whither Complexity?
• Will we ever have a single number that tells us how

complex a network is?
No…
 But we will have a bunch of numbers that help us

characterize specific parts
• Will we ever have something we can point to that

will mathematically prove, “this is complex,” “that
won’t scale,” etc.?
No…
 But we can understand what complexity looks like so we

can “see” elegance more clearly

Whither Complexity?
• One useful result would be a more realistic

view of network design and operation

• We’re caught on multiple pendulums
 Centralize! Decentralize!
 Layer protocols! Reduce protocol count!

• Most of these swings relate to our absolute
view of complexity
 There must be a better solution!
 Let’s go try that over there! (shiny thing syndrome)

• If we could gain a realistic view of complexity,
we might be able to see how to at least
reduce the frequency and amplitude…

Whither Complexity?
• One useful result would be a more realistic view of

network design and operation
• We’re caught on multiple pendulums
 Centralize! Decentralize!
 Layer protocols! Reduce protocol count!

• Most of these swings relate to our absolute view of
complexity
 This is so complex – there must be a better solution!
 Let’s go try that over there! (shiny thing syndrome)

• If we could gain a realistic view of complexity, we might be
able to see how to at least reduce the frequency and
amplitude of these pendulum swings…

One Way Forward
• Measurements within a framework
Understand the system as a whole
 Think about how to measure each point
 Think about how to compare, or weigh, each pair of

points
• Document the tradeoffs we find in real life
Helps guide the work of developing measurements
Helps build a “body of knowledge” that will drive the

state of the art in network design forward

Efforts to Measure & Describe
• Network Complexity Working Group (NCRG)
 IRTF working group
 Trying to find ways to describe and measure

complexity
Gathering papers in the network complexity space on

networkcomplexity.org
• draft-irtf-ncrg-network-design-complexity-00.txt
Within NCRG
Parallel to this presentation

The End!

Fast Reroute as an Example
Additional Slides

Fast Detection
• Interaction with the Control Plane
 If we can detect failures faster than the control

plane can react, we can build a supported
feedback loop that overwhelms the control
plane, resulting in a general failure

• Solutions?
 We can exponentially back off notifications
 We can notify on down immediately, and up

much more slowly
 Both of these increase policy, increase MTTR,

etc.

Fast Detection
• A number of different systems have been devised
over the years to detect link and device failure
BFD, fast hellos, etc.

• Using these techniques, we can get failure
detection into the 10’s of ms

• What are the complexity tradeoffs?

Fast Detection
• False Positives
 Dropped packets can cause a an apparent failure where no

failure exists
We can exponentially backoff failure reports…
 But we must manage these backoffs on a per link or situation basis
 Policy dispersion, anyone?

We can hold a link down for specific periods of time after a
failure
 When there is no failure, this just exacerbates the effect of the false

positive
 When there is a failure, this makes the MTTR longer

• Any solution adds policy (and complexity) to the
control plane

Precompute: Edge-to-Edge Tunnels
• Edge-to-Edge Tunnels
 A can compute the best path to 192.0.2.0/24
 This first path would normally be a tunnel, such as

MPLS
 A can then precompute a second path,

tunneled edge-to-edge, to 192.0.2.0/24
 If the primary path fails, A places traffic on the

backup tunnel

• The normal way to do this is MPLS
 On networks that are already using MPLS to

transport edge-to-edge traffic

192.0.2.0/24

A

B

C

D

E

Precompute: Edge-to-Edge Tunnels
• Complexity Costs
 Additional processing at edge nodes
 To compute alternate paths – almost nil

 Some form of dynamic tunnels
 For networks already running edge-to-edge paths, nil

 Additional state
 Requires the flooding of alternate end points to

protect against tunnel head and tail failure
 Requires additional forwarding state in edge (and

sometimes core) devices
 Open end points on every device in the

network
 For networks already running edge-to-edge paths, nil

192.0.2.0/24

A

B

C

D

E

Precompute: Edge-to-Edge Tunnels
• Complexity Costs (continued)
 Designing the topology for alternate paths
 Any two connected topology will do
 There are no topology restrictions – actually

reduces design complexity
 Link overload and quality of service issues
 For networks already using edge-to-edge tunnels

for traffic engineering, this is probably close to nil
 Additional management complexity
 Overlay control plane deployed throughout network
 Troubleshooting complexity, etc.

192.0.2.0/24

A

B

C

D

E

Policy Dispersion Example

Optimal Forwarding
• Traffic originating at A, B,

and C must pass through
deep packet inspection
before reaching D

• Where should we put this
policy?

A B C

D

Optimal Forwarding
• At the first hop router?

• We have to manage per edge
node

• I can automate these
configurations, but…
 Now I have to manage a new set

of tools and processes

• No matter how I slice this,
dispersing policy closer to the
edge adds complexity

A B C

D

Optimal Forwarding
• At the second hop router?

• Reduces the number of
devices to manage

• But…
 Potentially wastes bandwidth

between the first and second
hop router
 Leaves the first hop routers

without the packet inspection
protection offered at the edge A B C

D

Service Chaining
• I know! I’ll just virtualize my services
 Then I can tunnel the traffic service to service

starting from where it enters the network!
• Good try…
But you can’t fool the demons of complexity

that easily…

Service Chaining
• Create a new virtual service

containing the packet
inspection process
someplace close to D

• At the network entrance…
 Look up the destination D
 Determine the class of service,

based on the source A
 Tunnel the traffic to the virtual

packet inspection service
A B C

D

Service Chaining
• We’ve kept the service

logically close to the
network edge, while
physically centralizing it

• You can bring the policy to
your packets, or you can
bring the packets to your
policy
 To paraphrase Yaakov’s rule…

A B C

D

Service Chaining
• We’ve still added complexity
 The policy about which packets to put in which tunnels to

chain to which services must be programmed in at the
edge devices

• And we’ve still reduced optimality
 Traffic must be tunneled through the network
 Potentially wasting bandwidth for packets that will be dropped at

some future policy point
 Tunnels must be configured and maintained

Managing quality of service becomes more complex
 The length of the real path of the packets has increased

Aggregation/Stretch
• If B and C do not aggregate
 A will have the optimal route to

reach both 192.0.2.0/26 and
192.0.2.64/26

• But…
 A will have more routes in its

local routing table
 A will receive topology state

changes for all the links and
nodes behind B and C
 So more routes, more state

change visibility, more complexity 192.0.2.0/26

192.0.2.64/26

A

B

D

C

E

Aggregation/Stretch
• Assume A aggregates to

192.0.2.0/24
 A will choose either A or B for

everything within this subnet
(ignoring ECMP)
 Hence A will choose a suboptimal

route to either 192.0.2.0/26 or
192.0.2.64/26

• Reduces complexity
 A has fewer routes in its local

table
 A deals with less state change

over time
192.0.2.0/26

192.0.2.64/26

A

B

D

C

E

Aggregation/Stretch
• Aggregation almost always confronts us with the
state verses stretch tradeoff

• More state == more optimal paths
• Less state == less optimal paths
Or more stretch – the difference between the optimal

path through the network and the path the traffic
actually takes

Control Plane Centralization
• Let’s centralize the entire control plane!
• Won’t this be simpler?
 Policy will be in one place
 Easier design
 No thinking through aggregation, etc.
 Just install the routes where they need to be in real time

 Can dynamically interact with the control plane in real time
 Applications can tell the control plane when new paths/etc. are needed

• Sounds neat
 But… has anyone read RFC1925 recently?
 It is always possible to agglutinate multiple separate problems

into a single complex interdependent solution. In most cases
this is a bad idea.

Control Plane Centralization
• Complexity Points
 North/South interface
 This isn’t as simple as it sounds
 Particularly as there is a “kitchen sink” tendency in these

things
 Resilience
 The controller is a single point of failure
 This has to be mitigated somehow…

 Fast convergence
 We can always precompute and install alternate paths
 But double failures and rapidly changing local conditions can

stress the system, possibly causing a control plane failure

• Maybe we need a new rule of thumb…
 Distribute where you can, centralize where you must…

Control Plane State Example

Control Plane Virtualization
• Virtualizing the control plane can control

the amount of state and the rate of
change

• The setup
 A only needs to talk to C
 B only needs to talk to D
 So let’s create two tunnels that allow this traffic

flow

• E only needs to know how to reach the
tunnel end points, not the individual
destinations

A B

C D

E

Control Plane Virtualization
• But how do we know where to set the

tunnels up?

• We’ve essentially moved control plane
forwarding state from the control plane…
 …into policy
 …into an overlay protocol

• Does increasing policy or adding another
protocol really reduce overall complexity?
 Or are we just moving complexity around in the

network?

A B

C D

E

Control Plane Virtualization
• We could autoconfigure the tunnels…
 Blast the traffic for destinations we don’t know how to

reach everywhere
 Someone, someplace, answers us with the right mapping
 Build a tunnel based on what we’ve just discovered
 Hold the tunnel until no more traffic is passing through the

path…
• Many schemes have used this type of mechanism
 LISP
 TRILL (following bridging in general!)
 ATM/LANE

Control Plane Virtualization
• But is it really simpler?
 Throws complexity onto the edge device
 A sends a packet to C and never receives a reply…
 Has the path has failed, or the destination?

 Introduces entropy based on traffic flow
 What should the forwarding table look like at any

given moment?
 What size will the forwarding table be under any

given network conditions?

• Not really…
 The complexity has moved to the transport

protocol and caching algorithms

A B

C D

E

??

	Tradeoffs in Network Complexity
	Tradeoffs in Network Complexity
	Defining Complexity
	Network Complexity Index
	NetComplex
	Design Intent
	Where We Are
	Network Complexity is Organized
	Where We Are
	Complexity Tradeoffs
	Complexity verses the Problem
	Complexity verses the Toolset
	Complexity verses Skill Set
	Complexity verses Complexity
	The Complexity Graph
	The Point
	The Goal
	Fast Reroute as an Example
	Precompute
	Precompute: LFAs
	Precompute: Tunneled LFAs
	Precompute: Tunneled LFAs
	Whither Complexity?
	Whither Complexity?
	Whither Complexity?
	Whither Complexity?
	One Way Forward
	Efforts to Measure & Describe
	The End!
	Fast Reroute as an Example
	Fast Detection
	Fast Detection
	Fast Detection
	Precompute: Edge-to-Edge Tunnels
	Precompute: Edge-to-Edge Tunnels
	Precompute: Edge-to-Edge Tunnels
	Policy Dispersion Example
	Optimal Forwarding
	Optimal Forwarding
	Optimal Forwarding
	Service Chaining
	Service Chaining
	Service Chaining
	Service Chaining
	Aggregation/Stretch
	Aggregation/Stretch
	Aggregation/Stretch
	Control Plane Centralization
	Control Plane Centralization
	Control Plane State Example
	Control Plane Virtualization
	Control Plane Virtualization
	Control Plane Virtualization
	Control Plane Virtualization
	Slide Number 58

