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Defining Complexity



Network Complexity Index
• Breaks a network up into 

communities
• The interaction of the 

communities is calculated to 
provide a network complexity 
index

• Based on
 Number of nodes
 Degree of nodes
 Number of edges
 Rate of change in nodes and 

edges

A Network Complexity Index for Networks of Networks; Stuart Bailey and Robert L. Grossman

…where j ε [1, …, p]. B(N) is a 
well-known statistic called the 
H-index and is used commonly 
in citation analysis [10]. The 
formulation above of the H-
index in terms of a 
maximization problem is due to 
Glanzel [11].



NetComplex
• Computes complexity from 

state and function

• Pits distributed against 
centralized algorithms

• Makes note of aggregation 
and other mechanisms

http://www.eecs.berkeley.edu/~sylvia/papers/netcomp.pdf

Our metric assigns equal importance to value and 
transport dependencies. However, depending on the 
system environment, this may not be the best choice…

Our metric treats all input or transport states as equally 
important. However, sometime certain input or 
transport states are more important (for correctness, 
robustness, etc.) than others.

Our metric treats all inputs as independent which might 
result in over-counting dependencies from correlated 
inputs.



Design Intent

http://www.ietf.org/proceedings/85/slides/slides-85-ncrg-0.pdf



Where We Are
• There are some (good!) tools out there
 This research will only get better over time

• Each one focuses on a single part of the overall 
problem
 Control plane state 
 Configuration complexity

• Each one attempts to provide an absolute measure 
in one specific area

• But systemic complexity isn’t absolute
 Complexity in one system interacts with complexity in 

other systems



Network Complexity is Organized
• Organized complexity is 

different than disorganized 
complexity

• They are all problems which 
involve dealing 
simultaneously with a sizable 
number of factors which are 
interrelated into an organic 
whole. They are all, in the 
language here proposed, 
problems of organized 
complexity. –Weaver, 1948



Where We Are
• Statistics will be of limited use in this realm
 Statistics will tell you if there is information (Shannon), 

but not what that information means
• We must interact with intent
Network design intends to solve specific problems
How can you measure intent?



Complexity Tradeoffs



Complexity verses the Problem
• Harder problems tend to require more complex 
solutions  
Complexity has no meaning outside the context of the 

problem being solved
Nail verses screw verses screw+glue

• How many balloons fit in a bag?



Complexity verses the Toolset
• More complexity can be managed with better tools
 If your only tool is a hammer…

• But we need to figure in the cost of the tool
Nail guns are harder to maintain than hammers
 Sonic screwdrivers are notorious for breaking at just the 

wrong moment



Complexity verses Skill Set
• Things that are complex for one person might 
not be for another…
 This isn’t a (just) matter of intelligence, it’s also a 

matter of focus and training



Complexity verses Complexity
• Complexity comes in pairs 
 It is easier to move a problem around (for example, by 

moving the problem to a different part of the overall 
network architecture) than it is to solve it. 
 It is always possible to add another level of indirection.
RFC1925

• Decreasing complexity in one part of the system 
will (almost always) increase complexity in 
another
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The Point
• You can never reach some other desirable 
goal without increasing complexity
Decreasing complexity in one place will (nearly) 

always increase it in another
Decreasing complexity in one place will often 

lead to suboptimal behavior in another
 Increasing service levels or solving hard 

problems will almost always increase complexity

You don’t have to have a point, to have a point…



The Goal
• Bad questions
 How complex is this?
Will this scale?

• Good questions
Where will adding this new thing increase complexity?
 If I reduce complexity here, where will I increase it?
 If I reduce complexity here, where will suboptimal 

behavior show up?
• Complexity at the system level is about 

tradeoffs, not absolutes



Fast Reroute as an Example



Precompute
• Router A uses the path through B as its 

primary path to 192.0.2.0/24

• There is a path through C, but this path is 
blocked by the control plane
 If A forwards traffic towards 192.0.2.0/24 to C, 

there is at least some chance that traffic will 
be reflected back to A, forming a routing loop

• We would like to be able to use C as an 
alternate path in the case of a link failure 
along A->B->E
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Precompute: LFAs 
• Loop Free Alternates (LFAs)
 A can compute the cost from C to determine if 

traffic forwarded to 192.0.2.0/24 will, in fact, be 
looped back to A
 If not, then A can install the path through C as a 

backup path

• Gains
 Faster convergence

• Costs
 Additional computation at A (almost nil)
 Designing the network with LFAs in mind
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Precompute: Tunneled LFAs 
• Tunnel into Q
 A can compute the first hop beyond C where 

traffic destined to 192.0.2.0/24 will not loop 
back
 A then dynamically builds a tunnel through C 

to this point and installs the tunnel interface 
as a backup route
 There are a number of ways to do this
 NotVIA, MRT, Remote LFA, etc.
 Different computation and tunneling mechanisms, 

but the general theory of operation is the same
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Precompute: Tunneled LFAs 
• Gains
 Relaxed network design rules (rings are okay)
 Eliminates microloops
 Faster convergence

• Costs
 Additional computation at A (almost nil)
 Some form of dynamic tunnel
 Additional control plane state
 Designing the network with alternate paths in 

mind
 These mechanisms don’t support every possible 

topology (but more than LFAs)
 Thinking about alternate traffic patterns to project link 

overload, QoS requirements, etc.

192.0.2.0/24
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Whither Complexity?



Whither Complexity?
• Will we ever have a single number that tells us how 

complex a network is?
No…
 But we will have a bunch of numbers that help us 

characterize specific parts
• Will we ever have something we can point to that 

will mathematically prove, “this is complex,” “that 
won’t scale,” etc.?
No…
 But we can understand what complexity looks like so we 

can “see” elegance more clearly



Whither Complexity?
• One useful result would be a more realistic 

view of network design and operation

• We’re caught on multiple pendulums
 Centralize! Decentralize!
 Layer protocols! Reduce protocol count!

• Most of these swings relate to our absolute 
view of complexity
 There must be a better solution!
 Let’s go try that over there! (shiny thing syndrome)

• If we could gain a realistic view of complexity, 
we might be able to see how to at least 
reduce the frequency and amplitude…



Whither Complexity?
• One useful result would be a more realistic view of 

network design and operation
• We’re caught on multiple pendulums
 Centralize! Decentralize!
 Layer protocols! Reduce protocol count!

• Most of these swings relate to our absolute view of 
complexity
 This is so complex – there must be a better solution!
 Let’s go try that over there! (shiny thing syndrome)

• If we could gain a realistic view of complexity, we might be 
able to see how to at least reduce the frequency and 
amplitude of these pendulum swings…



One Way Forward
• Measurements within a framework
Understand the system as a whole
 Think about how to measure each point
 Think about how to compare, or weigh, each pair of 

points
• Document the tradeoffs we find in real life
Helps guide the work of developing measurements
Helps build a “body of knowledge” that will drive the 

state of the art in network design forward



Efforts to Measure & Describe
• Network Complexity Working Group (NCRG)
 IRTF working group
 Trying to find ways to describe and measure 

complexity
Gathering papers in the network complexity space on 

networkcomplexity.org
• draft-irtf-ncrg-network-design-complexity-00.txt
Within NCRG
Parallel to this presentation



The End!



Fast Reroute as an Example
Additional Slides



Fast Detection
• Interaction with the Control Plane
 If we can detect failures faster than the control 

plane can react, we can build a supported 
feedback loop that overwhelms the control 
plane, resulting in a general failure

• Solutions?
 We can exponentially back off notifications
 We can notify on down immediately, and up 

much more slowly
 Both of these increase policy, increase MTTR, 

etc.



Fast Detection
• A number of different systems have been devised 
over the years to detect link and device failure
BFD, fast hellos, etc.

• Using these techniques, we can get failure 
detection into the 10’s of ms

• What are the complexity tradeoffs?



Fast Detection
• False Positives
 Dropped packets can cause a an apparent failure where no 

failure exists
We can exponentially backoff failure reports…
 But we must manage these backoffs on a per link or situation basis
 Policy dispersion, anyone?

We can hold a link down for specific periods of time after a 
failure
 When there is no failure, this just exacerbates the effect of the false 

positive
 When there is a failure, this makes the MTTR longer

• Any solution adds policy (and complexity) to the 
control plane



Precompute: Edge-to-Edge Tunnels
• Edge-to-Edge Tunnels
 A can compute the best path to 192.0.2.0/24
 This first path would normally be a tunnel, such as 

MPLS
 A can then precompute a second path, 

tunneled edge-to-edge, to 192.0.2.0/24
 If the primary path fails, A places traffic on the 

backup tunnel

• The normal way to do this is MPLS
 On networks that are already using MPLS to 

transport edge-to-edge traffic
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Precompute: Edge-to-Edge Tunnels
• Complexity Costs
 Additional processing at edge nodes
 To compute alternate paths – almost nil

 Some form of dynamic tunnels
 For networks already running edge-to-edge paths, nil

 Additional state
 Requires the flooding of alternate end points to 

protect against tunnel head and tail failure
 Requires additional forwarding state in edge (and 

sometimes core) devices
 Open end points on every device in the 

network
 For networks already running edge-to-edge paths, nil

192.0.2.0/24
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Precompute: Edge-to-Edge Tunnels
• Complexity Costs (continued)
 Designing the topology for alternate paths
 Any two connected topology will do
 There are no topology restrictions – actually 

reduces design complexity
 Link overload and quality of service issues
 For networks already using edge-to-edge tunnels 

for traffic engineering, this is probably close to nil
 Additional management complexity
 Overlay control plane deployed throughout network
 Troubleshooting complexity, etc.

192.0.2.0/24
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Policy Dispersion Example



Optimal Forwarding
• Traffic originating at A, B, 

and C must pass through 
deep packet inspection 
before reaching D

• Where should we put this 
policy?

A B C

D



Optimal Forwarding
• At the first hop router?

• We have to manage per edge 
node

• I can automate these 
configurations, but…
 Now I have to manage a new set 

of tools and processes

• No matter how I slice this, 
dispersing policy closer to the 
edge adds complexity

A B C

D



Optimal Forwarding
• At the second hop router?

• Reduces the number of 
devices to manage

• But…
 Potentially wastes bandwidth 

between the first and second 
hop router
 Leaves the first hop routers 

without the packet inspection 
protection offered at the edge A B C

D



Service Chaining
• I know! I’ll just virtualize my services
 Then I can tunnel the traffic service to service 

starting from where it enters the network!
• Good try…
But you can’t fool the demons of complexity 

that easily…



Service Chaining
• Create a new virtual service 

containing the packet 
inspection process 
someplace close to D

• At the network entrance…
 Look up the destination D
 Determine the class of service, 

based on the source A
 Tunnel the traffic to the virtual 

packet inspection service
A B C

D



Service Chaining
• We’ve kept the service 

logically close to the 
network edge, while 
physically centralizing it

• You can bring the policy to 
your packets, or you can 
bring the packets to your 
policy
 To paraphrase Yaakov’s rule…

A B C
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Service Chaining
• We’ve still added complexity
 The policy about which packets to put in which tunnels to 

chain to which services must be programmed in at the 
edge devices

• And we’ve still reduced optimality
 Traffic must be tunneled through the network
 Potentially wasting bandwidth for packets that will be dropped at 

some future policy point
 Tunnels must be configured and maintained

Managing quality of service becomes more complex
 The length of the real path of the packets has increased



Aggregation/Stretch
• If B and C do not aggregate
 A will have the optimal route to 

reach both 192.0.2.0/26 and 
192.0.2.64/26

• But…
 A will have more routes in its 

local routing table
 A will receive topology state 

changes for all the links and 
nodes behind B and C
 So more routes, more state 

change visibility, more complexity 192.0.2.0/26

192.0.2.64/26
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Aggregation/Stretch
• Assume A aggregates to 

192.0.2.0/24
 A will choose either A or B for 

everything within this subnet
(ignoring ECMP)
 Hence A will choose a suboptimal 

route to either 192.0.2.0/26 or 
192.0.2.64/26

• Reduces complexity
 A has fewer routes in its local 

table
 A deals with less state change 

over time
192.0.2.0/26

192.0.2.64/26
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Aggregation/Stretch
• Aggregation almost always confronts us with the 
state verses stretch tradeoff

• More state == more optimal paths
• Less state == less optimal paths
Or more stretch – the difference between the optimal 

path through the network and the path the traffic 
actually takes



Control Plane Centralization
• Let’s centralize the entire control plane!
• Won’t this be simpler?
 Policy will be in one place
 Easier design
 No thinking through aggregation, etc.
 Just install the routes where they need to be in real time

 Can dynamically interact with the control plane in real time
 Applications can tell the control plane when new paths/etc. are needed

• Sounds neat
 But… has anyone read RFC1925 recently?
 It is always possible to agglutinate multiple separate problems 

into a single complex interdependent solution. In most cases        
this is a bad idea.



Control Plane Centralization
• Complexity Points
 North/South interface
 This isn’t as simple as it sounds
 Particularly as there is a “kitchen sink” tendency in these 

things
 Resilience
 The controller is a single point of failure
 This has to be mitigated somehow…

 Fast convergence
 We can always precompute and install alternate paths
 But double failures and rapidly changing local conditions can 

stress the system, possibly causing a control plane failure

• Maybe we need a new rule of thumb…
 Distribute where you can, centralize where you must…



Control Plane State Example



Control Plane Virtualization
• Virtualizing the control plane can control 

the amount of state and the rate of 
change

• The setup
 A only needs to talk to C
 B only needs to talk to D
 So let’s create two tunnels that allow this traffic 

flow

• E only needs to know how to reach the 
tunnel end points, not the individual 
destinations

A B
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Control Plane Virtualization
• But how do we know where to set the 

tunnels up?

• We’ve essentially moved control plane 
forwarding state from the control plane…
 …into policy
 …into an overlay protocol

• Does increasing policy or adding another 
protocol really reduce overall complexity?
 Or are we just moving complexity around in the 

network?
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Control Plane Virtualization
• We could autoconfigure the tunnels…
 Blast the traffic for destinations we don’t know how to 

reach everywhere
 Someone, someplace, answers us with the right mapping
 Build a tunnel based on what we’ve just discovered
 Hold the tunnel until no more traffic is passing through the 

path…
• Many schemes have used this type of mechanism
 LISP
 TRILL (following bridging in general!)
 ATM/LANE



Control Plane Virtualization
• But is it really simpler?
 Throws complexity onto the edge device
 A sends a packet to C and never receives a reply…
 Has the path has failed, or the destination?

 Introduces entropy based on traffic flow
 What should the forwarding table look like at any 

given moment?
 What size will the forwarding table be under any 

given network conditions?

• Not really…
 The complexity has moved to the transport 

protocol and caching algorithms
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