Embracing Failure

Fault Injection and Service Resilience
at Netflix

Josh Evans
Director of Operations Engineering, Netflix

Josh Evans

24 years in technology
Tech support, Tools, Test Automation, IT & QA

Management

Time at Netflix ~15 years
Ecommerce, streaming, tools, services, operations

Current Role: Director of Operations Engineering

Netflix Ecosystem

NETELIX

48 million members, 41 countries

> 1 billion hours per month

> 1000 device types

3 AWS Regions, hundreds of services
Hundreds of thousands of requests/second

Partner provided services (Xbox Live, PSN)
CDN serving petabytes of data at terabits/second

Static
Content

Akamai

AWS/Netflix
Control
Plane

Netflix CDN

Service
Partners

99.9999%

99.999%

99.99%

99.9%

99%

90%

Our Focus is on Quality and Velocity

-~
(%]
\5)

S

<

2
=

S

3
S
>

<

Availability vs. Rate of Change

.

T~

\

10 10

0

Rate of Change

31.5 seconds

5.26 minutes
52.56 minutes
8.76 hours
3.26 days

36.5 days

We Seek 99.99% Availability for Starts

Availability vs. Rate of Change

99.9999%

99.999%

99.99%

99.9%

99%

90%

-~
(%)
\5)

=

<
2
=

Q

S
S
>

<

.

T~

\

10 10

0

Rate of Change

31.5 seconds

5.26 minutes
52.56 minutes
8.76 hours
3.26 days

36.5 days

Our goal is to shift the curve

Availability vs. Rate of Change

99.9999% -\ \ e Engineering
06,9905 ® CQOperations
' \ ® Best Practices

99.99%

Continuous Improvement

99.9%

99%

-~
(%)
\5)

=

<
2
=

Q

S
S
>

<

.

90% ~

10 100
Rate of Change

Availability means that members can
® signup
activate a device

browse . NHH”(

watch F e
*:' MEN muss "=°"

RS

Wb 30N iln “ﬂ"

Lo BN 5 mn

What keeps us up at night

We're unable to connect you to Netflix. Please try
again later.

Failures happen all the time

Disks fail

Power goes, and your generator fails
Software bugs

Human error

Failure is unavoidable

We design for failure

Exception handling

Auto-scaling clusters

Redundancy

Fault tolerance and isolation
Fall-backs and degraded experiences
Protect the customer from failures

Is that enough?

No

How do we know if we’ve succeeded?
Does the system work as designed?
s it as resilient as we believe?

How do we prevent drifting into failure?

We test for failure

e Unit testing

e |[ntegration testing
e Stress/load testing
e Simulation matrices

Testing increases confidence but...

is that enough?

Testing distributed systems is hard

e Massive, changing data sets

e Web-scale traffic

e Complex interactions and information flows

e Asynchronous requests

e 3" party services

e All while innovating and improving our service

What if we regularly inject failures into our
systems under controlled circumstances?

Embracing Failure in Production

Don’t wait for random failures
Cause failure to validate resiliency

Test design assumptions by stressing them
Remove uncertainty by forcing failures regularly

smmn\& <

RN

Two Key Concepts

Auto-Scaling

e \Virtual instance clusters that scale and shrink with traffic
e Reactive and predictive mechanisms
e Auto-replacement of bad instances

Circuit Brea

Calculate Circuit
Health

Synchronous —®| .execute()

E] Y X : n

1
Construct Circuit Thread
NFDependency Asynchronous »| .queue() > Open? pool/queue run()
Command Object ’ full?
Yes
Short-circuit Reject) Got Response
Timeout

No

L Exception Thrown

return immediately
] l ¥ w
— s

Successful Fallback |« getFallback() |<

4—— Exception Thrown Not Implemented

<¢— Return Fallback Response

\\\\\\\\\mnnm//,,//

Sk

HYSTRIX

DEFEND YOUR APP

Failed Fallback

<¢——— Exception Thrown

Alvaul.
9 Return Successful Response
12T P

An Instance Fails

Monkey loose in your DC
Run during business hours

Instances fail all the time

What we learned
— State is problematic
— Auto-replacement works

— Surviving a single instance
failure is not enough

A Data Center Fails

Chaos Gorilla *® Simulate an availability zone
outage

e 3-zone configuration
e Eliminate one zone

e Ensure that others can
handle the load and nothing
breaks

What we encountered

What we learned

e Large scale events are hard to simulate
— Hundreds of clusters, thousands of instances

e Rapidly shifting traffic is error prone
— LBs must expire connections quickly

— Lingering connections to caches must be addressed
— Not all clusters pre-scaled for additional load

What we learned

e Hidden assumptions & configurations
— Some apps not configured for cross-zone calls
— Mismatched timeouts — fallbacks prevented fail-over
— REST client “preservation mode” prevented fail-over

e (Cassandra works as expected

Regrouping

e From zone outage to zone evacuation
— Carefully deregistered instances
— Staged traffic shifts

e Resuming true outage simulations soon

Regions Falil

[Customer Device }

Chaos Kong

Geo-located

[Regional Load Balancers }

()

Zuul — Traffic Shaping/Routing ¢

N y

JAVA AZ2 JAVAS

What we learned

e |t works!
e Disable predictive auto-scaling
e Use instance counts from previous day

Room for Improvement

e Not a true regional outage simulation
— Staged migration
— No “split brain”

Not everything fails completely

Latency Monkey Simulate latent service calls

e |nject arbitrary latency and

%l@)@ errors at the service level

e (Observe for effects

Service Architecture

Service A }

SCEeN Ty PN Py 4 ey

Service C

AWS

Latency Monkey

Device

e Server-side URI filters
e All requests
e URI pattern match
e Percentage of requests

e Arbitrary delays or responses

e@} :@

Service A

Service B }

J
J

Service C }

J

J

What we learned

Startup resiliency is an issue

Services owners don’t know all dependencies
Fallbacks can fail too

Second order effects not easily tested
Dependencies change over time

Holistic view is necessary

Some teams opt out

Fault Injection Testing (FIT)

Request-level simulations

Service A
N - J
q4 Edge [[Service B

Service C }
Device or Account Override? —

Benefits

Confidence building for latency monkey testing
Continuous resilience testing in test and

production
Testing of minimum viable service, fallbacks

Device resilience evaluation

Device Resiliency Matrix

Points of Failure:

Scenarios / Features:

Activate | Sign-up | Sign-in | Browse | My List Search Playback|

Postplay|

AB

All

Cinematch

All

DMS

All

DTS

All

EvCache

All

GPS

All

Identity (Cryptex)

All

NCCP (Playback)

Netflix
Service

All

henticateNetflixIdC d

CloseStreamC dPrimary

LogClientinfoCommand

NccpGeoLookupC

OpenStreamCommand

OpenStreamC dPrimary

SelectCdnsDependencyC

SetDeviceActivityCommand

SetlLogsC: d

UpdateStreamC

GetPlayReadyLicenseC

NDCMap

All

Map

All

Playlist

All

P13N

All

Search

All

Social

All

Subscriber

All

NOTE13 NOTE6
NOTE 14
NOTE 14

NOTE 12
NOTE 12

NOTE 11

NOTE 11

NOTE 11

NOTE11

NOTES

NOTE 10

Legend:

NOTE1
NOTE2

NOTE4
NOTES
NOTE 6
NOTE7
NOTE9
NOTE 10
NOTE 11
NOTE 12
NOTE 13

Full functionality
Limited functionality
Loss of functionality

User ratings are not displayed and rating fails with an error B20-H400

MDP is blank with error B3-F8. SDP partially loads with error B11-F8, but app crashes when attempting to rate, or
My List loads, but movies cannot be added/removed (MDP has invisible add/remove button), while shows are ok
MDP doesn't show rating control. SDP has a rating control, but app crashes.

Continue Watching playback fails with B27-F8. Playing from MDP is not possible. Playing from SDP crashes the apy]
App fails to start with B1-F8.

My List does not load. Add to My List fails with B18-H400

My List loads, but Add/Remove results in error B18-H400

Searching fails with B16-F8

App fails to start with B39-F10 [Sign in] [Exit]

Playback error W8106-151 (Streaming is temporary unavailable)

On start up: Error B33-S1 [Exit]

Error "500 InternalServerError" [Try again] [Cancel]

SignedOutPage: no error message, despite register failure. SigninPage: "Streaming is temporary unavailable. We
Continue Watching section is missing

Is that it?

Fault-injection isn’t enough
— Bad code/deployments
Configuration mishaps
Byzantine failures
I IAAELS
Performance degradation

A Multi-Faceted Approach

Continuous Build, Delivery, Deployment
Test Environments, Infrastructure, Coverage
Automated Canary Analysis

Staged Configuration Changes

Crisis Response Tooling & Operations
Real-time Analytics, Detection, Alerting
Operational Insight - Dashboards, Reports
Performance and Efficiency Engagements

It's also about
people and culture

Technical Culture

e You build it, you run it

e Each failure is an opportunity to learn

e Blameless incident reviews

e Commitment to continuous improvement

Context and Collaboration

Context engages partners
e Data and root causes

e Global vs. local

e Urgent vs. important

e Long term vision

Collaboration yields better solutions and buy-in

NETFLIY |D55 Netflix Open Source Software Center

Repositories Powered By NetflixOSS

Availability

HYSTRIX

SIMIANARMY

Cloud Management

ICE

ASGARD

o\

TURBINE

FRIGGA

GLISTEN

y

The Simian Army is part of
the Netflix open source
cloud platform

http://netflix.github.com

ot
Operations-£ngineering

e

Josh Evans
Director of Operations Engineering, Netflix
jevans@netflix.com, @josh_evans_nflx

