
Who Are the Anycasters?

Doug Madory, Senior Analyst Chris Cook, Intern (Bucknell) Kevin Miao, Software Engineer

NANOG 59, Phoenix 9 October 2013

What is BGP Anycast?

- A prefix originated from multiple locations is said to be *anycast*
 - Goal: Improved reliability
 - Goal: Improved latencies
- Common Applications
 - Content Delivery
 - DDoS Protection
 - DNS Service

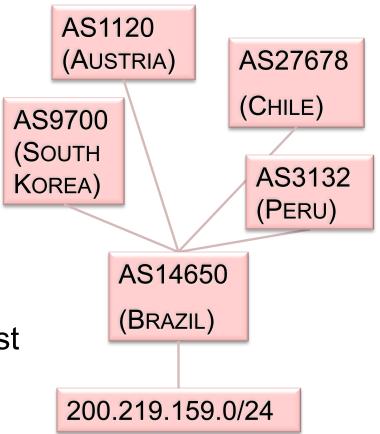
Two Techniques for Detecting Anycast

- We present two novel techniques for identifying anycast prefixes
 - Using global BGP routing data
 - Using global traceroute latency data
- Together they help us score prefixes for degree of *anycast-iness*
- High scoring prefixes are anycast

Why are We Doing This?

- Our work relies on *accurate* geolocation of IPs
- Anycast prefixes can be in multiple locations
- Where is Google's 8.8.8.8? Who do you believe?
 - United States (freegeoip.net)
 - New York, New York (Geobytes)
 - Mountain View, California (IP2Location)
 - Broomfield, Colorado (IPligence)
 - United States (Maxmind)
 - Mountain View, California (Quova)
 - United States (unlocktheinbox.com)

Besides, everyone is anycasting! – Anycast solves all problems!


- "At CloudFlare, we've done a significant amount of engineering to allow TCP to run across Anycast without flapping. This involves carefully adjusting routes in order to get <u>optimal routing</u>" – Cloudflare blog
- "Anycast, which uses mirrored servers represented by a common IP address, can <u>minimize transaction latency.</u>" Verisign, Investor relations
- "Google Public DNS uses anycast routing to direct all packets to the <u>closest DNS server.</u>" – Google Developers FAQ

A Brief Word about IP Geolocation Services

- We have found that commercial IP geolocation services tend to be <u>reasonably accurate</u> for eyeballs (i.e., where the ad revenue is located).
- But they can be <u>very inaccurate</u> for infrastructure IPs (e.g., routers, servers, etc.), multinational companies and 3rd world countries.
- We have spent considerable effort on fixing IP geolocation errors for <u>all IP addresses</u>, regardless of use.
- Anycast prefixes are but one corner case, but can be used to illustrate a few of our geolocation techniques.

BGP Routing Method

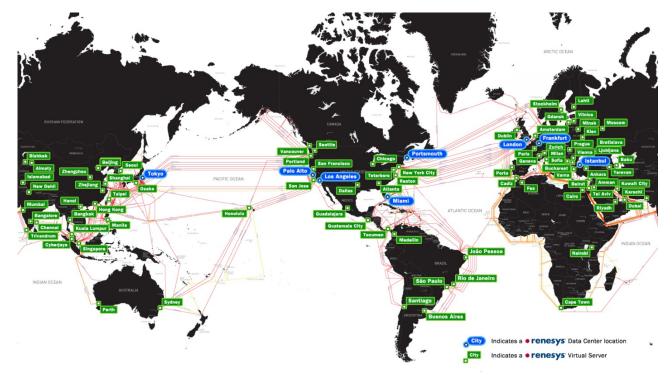
- Find all *domestic* providers (DPs) (i.e., those constrained in geographic scope)
- For each prefix ...
 - Examine its transit tree (from business relationships)
 - Determine the DPs seen
 - Score prefix based on # of DPs, their adjacencies and geos
- Higher score \rightarrow More likely anycast

Definition of a "Domestic Provider"

- What is a domestic provider?
 - 90% of transited prefixes in a single country
 - Arbitrary cut-off, but allows for some market penetration into neighboring countries and some misgeolocation
- Why domestic providers?
 - Multiple domestic providers in disparate countries/ continents transiting a given prefix imply the prefix is anycast.

Transit Tree Exceptions

- "Domestic" providers can provide transit to nearby countries
 - Russia and Kazakhstan
 - Australia and Papua New Guinea
- Satellite providers serve many countries
 - SatGate (AS 30721)
 - Eutelsat (AS 34444)
 - Many others
- Such edges are excluded from anycast scoring in the routing technique

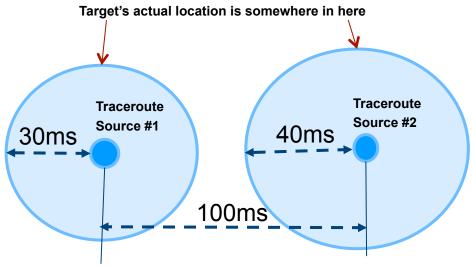

Example Anycast Prefixes from Routing

Prefix	Domestic Provider Countrie	<u>es Org</u>
178.249.136.0/21	CA DE DK ID NL RU SE US	ZA SoundCloud
93.174.200.0/21	DE DK ID RU SE US ZA	2AT
193.0.16.0/24	BT CZ DE GB RU US ZA	K root-server
194.14.219.0/24	BG DE IT NL PL US	Edis
178.250.72.0/21	BT DE GB RU US ZA	Exonetric Consulting
93.171.226.0/24	DE RU UA US PE	E Zvonkova Tatyana Aleksandrovna
84.205.78.0/24	DE GB NL US	RIPE
200.1.121.0/24	CL CZ MX US	Chile NIC

 All of these prefixes score very highly – Many domestic providers in highly disparate locations

Latency Technique

 Uses recent latency measurements to all routed prefixes from locations around the world



• renesys' Active Measurement Infrastructure - July 2013 (plus Global Submarine Cable Map)

Note: Some cities host multiple collectors. Cable map credit: Telegeography

Latency Technique

- Based on concept of "geo-inconsistency"
 - If the sum of observed latencies to a single IP address from two traceroute sources is less than the minimum possible latency between the sources, then the IP must be in more than one location

Can't be a single location, since sources are too far apart

Let's Use One of Our Tools

210ms

216ms

267ms

\$ min-latency --today 8.8.8.8

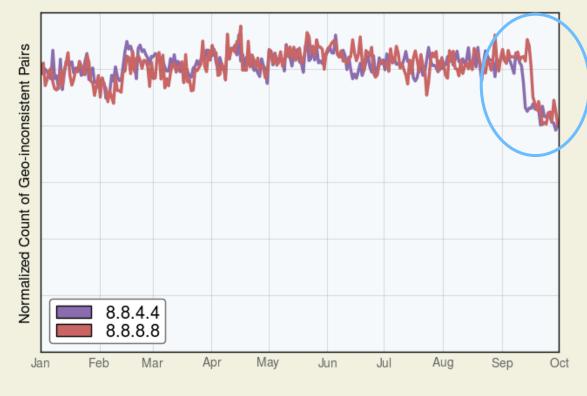
•	Sydney	0ms
•	Hong Kong	1ms
•	Kuala Lumpur	2ms
•	Taipei	2ms
•	Frankfurt	2ms
•	Chennai	3ms
•	Amsterdam	5ms
•	(many more)	
•	Cape Town	193ms
•	São Paulo	200ms

- São Paulo
- João Pessoa
- Nairobi
- Dubai

- Consider minimum observed latencies over some period
- Looks very geo-inconsistent, but not from everywhere
- No one can be everywhere, peering with everyone
- How can we measure degree of anycast-iness?
 - How many pairs of locations are geo-inconsistent?
 - How many possible pairs are there?
 - Take a ratio, higher is better: larger % of inconsistent pairs

Our tools do that too ...

<u>\$ min-latency --geocheck --today 8.8.8.8</u>


- 8.8.8.8 geo-inconsistent (2655)
- Hong Kong=1ms Sydney=0ms Min=72ms
- Kuala Lumpur=2ms Sydney=0ms Min=65ms
- ... (many more) ...
- Buenos Aires=157ms Taipei=2ms Min=187ms
- Buenos Aires=157ms Shanghai=30ms Min=190ms
- 2,655 geo-inconsistent pairs relative to this Google IP address on 4 October 2013
- Out of 6,216 possible pairs that day
- Google's DNS servers have very high anycast-iness!

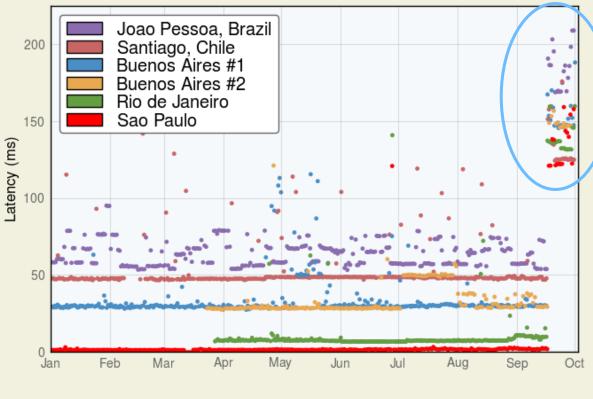
Anycast-iness of Google DNS over Time

- Consistently high anycast score over time for both of Google's public DNS server IPs
- Normal daily variance, depends on routing and provider options
- Something happened in September and is ongoing

Degree of Anycast-iness

1 Jan 2013 - 1 Oct 2013

Source: Global Traceroute Data


renesys

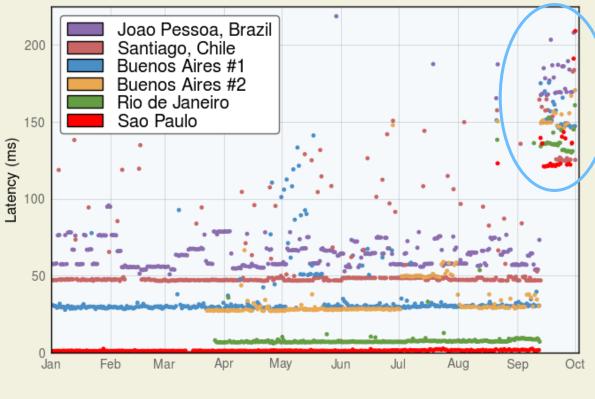
Google DNS Service via 8.8.8.8

Latencies to Google DNS (8.8.8.8)

1 Jan 2013 - 3 Oct 2013

- Considerable jump in traceroute latencies from South America to Google's 8.8.8.8
- Problem started
 September 16th
- Ongoing as of Oct 4th

Source: BGP Data


renesys[•]

Google DNS Service via 8.8.4.4

- Considerable jump in traceroute latencies from South America to Google's 8.8.4.4
- Problem started on September 12th (4 days before 8.8.8.8)
- Ongoing as of Oct 4th

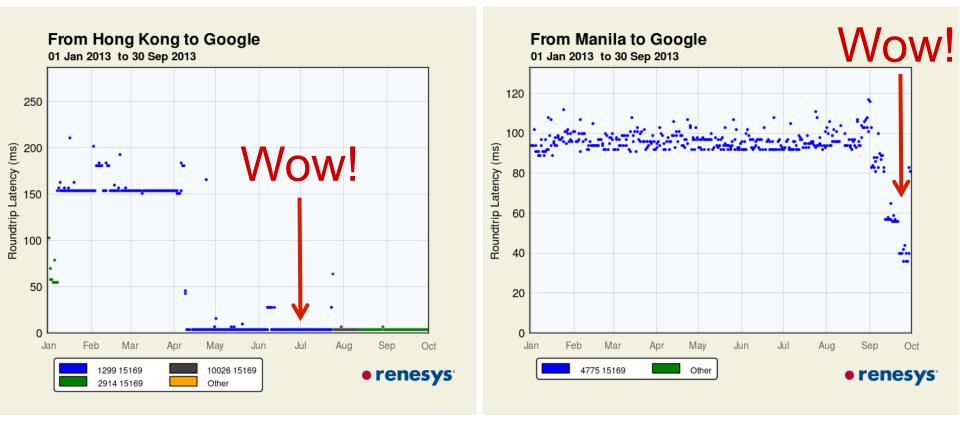
Latencies to Google DNS (8.8.4.4)

1 Jan 2013 - 3 Oct 2013

Source: BGP Data

renesys

What happened here?


- New Google IP hop makes an appearance on our traceroute measurements from this region
- Latencies jump considerably as a result
- Internal routing issue at Google? Google turns off South American data centers?
- We can only observe and alert on the change
- The problem, if any, must ultimately be resolved by the anycaster or its providers

Example Trace Fragments (Before & After)

Нор	Before	2013/09/15 23:57	Нор	After	2013/09/16 13:59
5	209.85.254.136	9.699	ms t	5 209.85.254.136	9.703ms
6	72.14.233.89	9.744	ms 6	5 72.14.236.174	16.650ms
7	64.233.175.18	9.906	ms 7	72.14.235.106	137.974ms
8	8.8.8.8	10.283	ms 8	3 209.85.252.96	137.974ms
			ę	209.85.248.29	135.957ms
			1() *	
			1'	8.8.8.8	136.594ms

Can't Anycast Reduce Latencies? – Absolutely, but no guarantees

Depends on available providers (both ends) & routing

What about Minimally Anycast Prefixes? – Same techniques find these as well

<u>\$ min-latency --geocheck --today 37.209.240.0/24</u>

- 37.209.240.1 geo-inconsistent (2)
- Kiev=1ms
 Moscow1=1ms
- Moscow2=3ms
 Kiev=1ms

\$ min-latency --geocheck --today 180.76.9.0/24

- 180.76.9.1 geo-inconsistent (2)
- Osaka=12ms Hong Kong1=2ms Min=26ms
- Osaka=12ms Hong Kong2=3ms

180.76.9.0/24 is also multi-originated (MOAS)

- Beijing Baidu Netcom Science and Technology Co. (AS 55967)
- BaiduJP (AS 38627)

baidu.hk

sports.ru

Min=7ms

Min=7ms

Min=26ms

Who Are the Anycasters?

Top Dozen by Prefix Count

•	Afilias Canada	69
•	UltraDNS	32
•	Pacnet	22
•	VeriSign	20
•	Edgecast	19
•	CloudFlare	18
•	Prolexic	15
•	BitGravity	15
•	AAPT	11
•	Neustar Ultra Services	10
•	China Internet Net Info Center	10

• AT&T 10

Other Notables

- Google 8
- Yahoo! 5
- Amazon 4
- Yandex 4
- Akamai 1

Anycasting is a Matter of Degree – Let's compare a few

- Distinct differences in anycast coverage
- Google has best coverage

How Do These Prefixes Compare?

- Rootservers.org states
 - B root: 1 site
 - L root: 146 sites
- Similar latency distribution for Sports.ru (minimally anycast) and B root (not anycast).
- Google has lowest latencies \rightarrow Best global coverage
- Big latency spikes imply inadequate coverage
- Microsoft spikes the worst at the tail of its distribution

Does having lots of sites help? – Seems to in this low latency example

Traceroute from Los Angeles to L root:

1sc-smv1717.servint.net	(206.214.212.114)	0.066ms	Los Angeles, CA
2ge-9-0-2.er1.lax112.us.above.net	(64.125.195.217)	0.216ms	Los Angeles, CA
3xe-5-3-0.cr2.lax112.us.above.net	(64.125.21.189)	0.489ms	Los Angeles, CA
4xe-2-0-0.mpr1.lax12.us.above.net	(64.125.31.193)	0.984ms	Los Angeles, CA
5ae7.edge2.LosAngles.Level3.net	(4.68.70.33)	0.413ms	Los Angeles, CA
6ae-3-80.edge6.LosAngeles1.Level3.net	(4.69.144.142)	0.449ms	Los Angeles, CA
7ae-17-17.car2.LosAngeles1.Level3.net	(4.69.201.14)	0.835ms	Los Angeles, CA
8INTERNET-CO.car2.LosAngeles1.Level3.net	(4.59.60.170)	0.460ms	Los Angeles, CA
9I.root-servers.net	(199.7.83.42)	0.470ms	Los Angeles, CA

Does having lots of sites help? – Not in this high latency example. Paths matter!

Traceroute from Los Angeles(2) to L root:

16I.ı	oot-servers.net	(199.7.83.42)	151.820ms	Dundee, Scotland, GB
15v2	242.g1-1.core2.dun.scotland.net	(213.128.240.34)	151.496ms	Dundee, Scotland, GB
14gi	2.edge2.dun.scotland.net	(213.128.240.9)	151.869ms	Dundee, Scotland, GB
1314	49.6.12.6	(149.6.12.6)	147.286ms	Edinburgh, GB
12te	1-1.ccr01.edi01.atlas.cogentco.com	(130.117.3.181)	147.624ms	Edinburgh, GB
11te	1-1.ccr01.gla01.atlas.cogentco.com	(130.117.3.173)	145.728ms	Glasgow, GB
10te	0-7-0-6.ccr21.man01.atlas.cogentco.com	(154.54.36.58)	141.216ms	Manchester, GB
9te	0-3-0-1.ccr21.lpl01.atlas.cogentco.com	(154.54.31.230)	140.231ms	Liverpool, GB
8te	0-4-0-3.ccr21.bos01.atlas.cogentco.com	(154.54.44.18)	74.541ms	Boston, US
7te	0-7-0-20.mpd21.jfk02.atlas.cogentco.com	(154.54.1.106)	68.533ms	New York City
6te	0-4-0-7.mpd22.dca01.atlas.cogentco.com	(154.54.27.93)	61.951ms	Washington, DC
5te	0-1-0-3.ccr21.atl01.atlas.cogentco.com	(154.54.2.81)	51.115ms	Atlanta, GA
4be	e2066.ccr22.iah01.atlas.cogentco.com	(154.54.7.53)	36.763ms	Houston, TX
3be	e2022.mpd22.lax01.atlas.cogentco.com	(154.54.88.1)	1.091ms	Los Angeles, CA
2te	0-7-0-12.ccr22.lax04.atlas.cogentco.com	(154.54.87.6)	0.720ms	Los Angeles, CA
1 vl	221.mag02.lax04.atlas.cogentco.com	(38.122.147.49)	0.424Ms	Los Angeles, CA

Anycast Prefix Totals & Sizes

- 593 Anycast Prefixes Detected Globally
 - 520 (88%) are /24s
 - 20 (3%) are /23s
 - 53 (9%) are larger
 - Larger prefixes may be anycast in part they definitely contain some geo-inconsistent IP
- Some larger ones include …
 - 217.160.80.0/22 1&1 Internet
 - 114.114.112.0/21 China Unicom

• 141.1.0.0/16

Cable & Wireless

Conclusions about Anycast Prefixes

- 593 routed prefixes are anycast
 - 0.13% of global IPv4 routing table
- We consistently see about 600 anycast prefixes over time
 - Surprisingly few and no real growth
- Mostly for CDN and DNS services
 - Also used for DDoS protection services
- Anycast prefixes are dominated by /24's

Overall Conclusions

- Unicast hosting from a single location
 - Local latencies might be low, distant ones will not be
- Anycast hosting from multiple locations
 - Latencies might be low from more locations
- No one can be everywhere, not even Google
 - Have to pick your markets & providers carefully then measure performance continuously
- Anycast is not a panacea. Traversed Paths Matter!

Who Are the Anycasters?

Doug Madory, Senior Analyst Chris Cook, Intern (Bucknell) Kevin Miao, Software Engineer

NANOG 59, Phoenix 9 October 2013