
Global Foundation Services

SERVERSDATA CENTERS SECURITY

C#
SOFTWARENETWORKS ENERGY

Adel Abouchaev, Tim LaBerge,

Petr Lapukhov, Edet Nkposong

Brain-Slug: a BGP-Only

SDN for Large-Scale

Data-Centers

Presentation Outline

Problem Overview

SDN Controller Design

Handling Failure Scenarios

Feature Roadmap

Conclusions

Problem Overview

BGP-Only Data Centers

BGP is the better IGP!

Clos topology for network fabric

100K bare metal servers and more!

IETF draft available

Layer 3 Only (no VLANs spanning)

Simple oblivious routing

Large fan-outs for big data-centers (32+)

Simpler than IGP, less issues

Converges fast enough if tuned

Single protocol drives simplicity

Operated for more than 2 years now

AS 65501

AS 64901 AS 64902

A
S

6
4

X
X

X

A
S

6
4

X
X

X

A
S

6
4

X
X

X

A
S

6
4

X
X

X

SDN Use Cases for Data-Center

First of all, SDN is defined as ‘centralized packet forwarding control’

But web-Scale data-centers are in fact simple

A lot of advanced logic is pushed to the servers already

• E.g. virtual overlays built in software (if any)

• Traffic filtering, stats collection and analysis

• Load-balancing and mobility

Network is simplified as much as possible

Changing routing behavior – but why?

…Remember routing logic is plain ECMP…

Still forwarding behavior needs to change sometimes

SDN Use Cases for Data-Center

Used for load-balancing in the network

Or to provide resiliency across the WAN

Unequal-cost load distribution in the network

E.g. to compensate for various link failures and re-balance traffic

More generic traffic engineering for arbitrary topologies

Moving Traffic On/Off of Links/Devices
Without using any sort of CLI intervention/expect script etc

Strive for zero packet loss, graceful ‘shutdown’

Multiple uses for this simple operation

• Graceful reload and automated maintenance

• Automated Isolation of network issues in “black box” scenarios

Goals and Non-Goals of project

- Deploy on existing

networks, without

software upgrades

- Low risk deployment,

should have easy

rollback story

- Leverage existing

protocols/functionality

- Override some routing

behavior, but keep non-

SDN paths where

possible

- Network virtualization or
segmentation, etc

- Per-flow, highly granular
traffic control

- Support for non-routed
traffic (e.g. L2 VPN)

- Optimizing existing
protocols or inventing
new ones

- Full control over all
aspects of network
behavior (low-level)

SDN Controller
Design

Network Setup

New configuration added

- Template to peer with the central
controller (passive listening)

- Policy to prefer routes injected from
controller

- Policy to announce only certain routes to
the controller

Peering with all devices: multi-hop

Key requirement: path resiliency

Clos has very rich path set

Network partition is highly unlikely Only Partial Peering Set

Displyaed

AS

65501

AS

64901
AS

64902

A
S

 6
4

X
X

X

A
S

 6
4

X
X

X

A
S

 6
4

X
X

X

A
S

 6
4

X
X

X

Controller

SDN Controller Design

• BGP Speaker/Listener(s) could scale horizontally (no shared state)
• Controller stores link-state of the network (next slides)
• Shared state could be anything e.g. devices to bypass/overload

BGP Speaker

BGP Listener

Decision

Thread

Shared

State

Database

Command

Center

Network

Graph

(bootstrap

information)

BGP

Sessions

Inject Route Command:

Prefix + Next-Hop + Router-ID

Receive Route Message:

Prefix + Router-ID

REST

API

State

Sync Thread
Wakeup

&

Read

Speaker

Thread

Listener

Thread

Write

&

Notify

Network

Devices

BGP Speaker/Listener

Does not need to perform best-path selection

Does not need to relay BGP updates

BGP Listener [stateless]

• Tell controller of prefixes received

• Tell controller of BGP sessions coming up/down

• Preferably using structured envelope (JSON/XML)

BGP Speaker [stateful]

• API to announce/withdraw a route to a peer

• Keep state of announced prefixes

• Note: State not shared among speakers

Current P.O.C uses open-source ExaBGP

Implementing a simple C# version

BGP Speaker

BGP Listener

Inject Route Command:

Prefix + Next-Hop + Router-ID

Receive Route Message:

Prefix + Router-ID

Building Network Link State

Use a simple form of control plane ping

BGP session reflects physical link health

• Assumes single BGP session b/w two devices

• Could be always achieved using port-channels

Create a /32 host route for every device

Inject prefix for device X into device X

Expect to hear this prefix via all devices Y1…Yn, directly
connected to X

If heard, declare link between X and Y as up

Community tagging + policy ensures prefix only leaks “one
hop” from point of injection

R1 R2

Controller

Prefix for R1

relayed

Inject

Prefix for R1

with one-hop

community

Expect

Prefix for R1

from R2

R3

Prefix for R1

NOT relayed

Overriding Routing Decisions

The controller knows of all “edge” subnets and devices (e.g. ToRs)

Run SPF and compute next-hops (BFS works in most cases, O(m))

• For every “edge” prefix at every device

• Check if this is different from “baseline network graph” decisions

• Only push the “deltas”

• Prefixes are pushed with third party next-hops (next slide)

Zero delta if no differentсe from “baseline” routing behavior

Controller may declare a link/device down to re-route traffic

Implements the “overload” functionality

Overriding Routing Decisions

Injected routes have third-party next-hop

Those need to be resolved via BGP

Next-hops have to be injected as well

A next-hop /32 is created for every device

Same one hop BGP community used

Same “keep-alive” prefix could be used as NH

Only one path allowed path per BGP session

Need either Add-Path or multiple peering
sessions

Worst case: # sessions = ECMP fan-out

Add-Path Receive-Only would help!

But model works in either case

R1

R2

Controller

Inject

Prefix X/24

with Next-Hops:

N1, N2

Inject

Next-Hop

prefix N1/32

R3

Inject

Next-Hop

prefix N2 /32

Next-hop prefix:

N1 /32

Next-hop prefix:

N2 /32

Overriding Routing Decisions

Simple REST to manipulate network state “overrides”

List of the supported calls:

- Logically shutdown/un-shutdown a link

- Logically shutdown/un-shutdown a device

- Announce a prefix with next-hop set via a device

- Read current state of the down links/devices etc

PUT http://.../overload/link/add=R1,R2&remove=R3,R4
PUT http://.../overload/router/add=R1&remove=R4

State is persistent across controller reboots

State is shared across multiple controllers

State = overloaded links/devices, “static” prefixes

Ordered FIB Programming

If updating BGP RIB’s on devices in no particular order

RIB/FIB tables could go out of sync for some time

Well-known micro-loops problem!

For every link state change

• Build reverse-SPF for link event

• Update prefixes from leafs to root

• Controller sequences the updates

The updates “implode” toward the change

Packet loss 40-50x times less compared to link shutdown

R1

S1 S2

R2 R3

Prefix X

This link

overloaded

(1) Update these

devices first

(2) Update these

devices second

Handling Failure
Scenarios

Handling Network Failures

Controller may add convergence overhead

• Only if prefix is controlled by BGP SDN

• …And if no backup paths available locally!

Convergence delay includes

• Detecting link fault/BGP session shutdown

• Withdrawing the “keep-alive” prefix

• Controller finding new next-hop

• Controller pushing new path information

• Measured to be < 1 second

In many cases, backup paths are available

• E.g. if an uplink fails, BGP re-converges locally

• Requires that BGP recursive resolution be event driven

• Possible to do local restoration in FIB agent

R1

R2

R3

Primary

Backup

Backup

Controller Intervention

needed when Primary fails

R1

R2

R3

Primary

Backup

(ECMP)

Backup

(ECMP)

Controller Intervention not

needed when Primary fails

(ECMP case)

R4

Primary

Multiple Controllers

Run N+1 controllers in “all active” fashion

Any single controller may command the network

Inject routes with different MED’s according to priority

• Higher MED paths used as backup

This way, backup routes are always in BGP table!

Need to share the “overloaded” link/device information

In-memory database, replicated using Paxos algorithm

P.O.C. done via ConCoord objects (OpenReplica)

ConCoord also used for inter-process coordination

• Shared database locking

• Notifying controllers of state change

Multiple Controllers cont.

Discovers the following from configuration files:

• Static network topology

• Prefixes bound to “edge” devices

• IP addresses to peer with

• Controller’s priority

Obtains Concoord event object for synchronization

Reads the shared state from ConCoord object (R/W lock)

Starts peering sessions with all devices

• Expects X% of all known links to be up before making decisions

Injects “override” routes with MED=100+priority

Assumes the reconstructed network state is eventually consistent
across the controllers

Feature Roadmap

Multiple Topologies

Subset of “edge” prefixes mapped to a separate logical topology

API to create topologies/assign prefixes to topologies

API to overload links/devices per topology

Separate “overloaded” links/devices per topology

Independent SPF runs per topology

Physical fault report raised to all topologies

Re-routing subset of traffic, as opposed to all traffic

E.g. for automated fault isolation process

Traffic Engineering

Failures may cause traffic imbalances
This includes:

• Physical failures

• Logical link/device overloading

Compute new traffic distribution

Program weighted ECMP

Signal using BGP Link Bandwidth

Not implemented by most vendors 

Not just Clos/Tree topologies

Think of BGP ASN as logical router

R2 R3

R1

R4

Link b/w R2 and R4 goes down but R1 does not

know that

50%

50%

100%
This link

congested

50%

R2 R3

R1

R4

Controller installs path with different ECMP

weights

25%
75%

50%
Congestion

alleviated

75%
25%

Traffic Engineering (cont.)

Requires knowing the following

• Traffic matrix (TM)

• Network topology and link capacities

Solves Linear Programming problem

Compute & push ECMP weights

• For every prefix

• At every hop

Optimal for a given TM

Link state change causes reprogramming

More state pushed down to the network

More prefixes are now controlled

A

B

33% 66%

Ask to the vendors!

Most common HW platforms can do it (BRCM)

Signaling via BGP does not look complicated either

Note: Has implications on hardware resource usage

Localized impact upon ECMP group change

Goes naturally with weighted ECMP

Well defined in RFC 2992 (ECMP case)

Not a standard (sigh)

We’d really like to have receive-only functionality

Conclusions

Lessons learned

Clearly define use cases, don’t look for silver bullets

Operational implications in front of everything else

BGP does not require new firmware or API’s

Some BGP extensions are nice to have

BGP code is pretty mature (for most vendors)

Easy to fail-back to regular routing

Controller code is very lightweight (<1000 LoC)

Solves our current problems and in future allows for much more

References

http://datatracker.ietf.org/doc/draft-lapukhov-bgp-routing-large-dc/

http://www.cs.princeton.edu/~jrex/papers/rcp-nsdi.pdf

http://code.google.com/p/exabgp/

http://datatracker.ietf.org/doc/draft-ietf-idr-link-bandwidth/

http://openreplica.org/

http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf

http://www.retitlc.polito.it/mellia/corsi/05-06/Ottimizzazione/744.pdf

http://www.seas.upenn.edu/~guerin/Publications/split_hops-Dec19.pdf

http://datatracker.ietf.org/doc/draft-lapukhov-bgp-routing-large-dc/
http://www.cs.princeton.edu/~jrex/papers/rcp-nsdi.pdf
http://code.google.com/p/exabgp/
http://datatracker.ietf.org/doc/draft-ietf-idr-link-bandwidth/
http://openreplica.org/
http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf
http://www.retitlc.polito.it/mellia/corsi/05-06/Ottimizzazione/744.pdf
http://www.seas.upenn.edu/~guerin/Publications/split_hops-Dec19.pdf

© 2013 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or
trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because
Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee
the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

29

