

Running MPLS efficiently in ring networks

Ravi Singh (ravis@juniper.net)

NANOG-65 [Montreal]

Agenda

Recap: Network-reality, MPLS, rings

MPLS in rings: Challenges

Addressing the challenges: Resilient MPLS Rings (RMR)

Recap: Network-reality, MPLS, rings

- Network-operators care greatly for:
 - Uptime
 - Effective network utilization

- Financial efficiency
 - Equipment cost (CapEx): Judicious hardware choice:
 Devices(routers), Interconnects (links)
 - Operational ease (OpEx savings): provisioning and management

Recap: Network-reality, MPLS, rings (cont'd...)

- MPLS: Enables the foregoing:
 - <u>Uptime</u>: Fast failure protection (Fast reroute)
 - Effective network utilization:
 - Traffic-engineered paths, multi-pathing(LSP-ECMP), entropy-label
 - LSP Bandwidth management: bandwidth accounting, autobandwidth

• <u>Financial efficiency</u>: Allows service-delivery convergence over a shared MPLS network

Recap: Network-reality, MPLS, rings (cont'd...)

- Rings' properties cater towards financial efficiency, in choosing a network topology:
 - Adequate # of interconnects to connect N nodes with some failure protection
 - For a given node-pair:
 - 2 paths between the nodes:
 - # of paths reduced to 1 by single failure
 - Second or subsequent failure partitions the network
 - Among node-pairs:
 - Path-overlap
 - Path-overlap leads to bandwidth-preciousness
- Deployed where the above is acceptable: access & aggregation

MPLS in rings: General challenges

- RSVP-TE signaled LSPs:
 - For complete connectivity
 - Provisioning overhead: O(N²) LSPs
 - LSP state in network:
 - For O(N²) LSPs: ok for path-diversity
 - Additional state for bypasses
 - After failure:
 - Inefficient path (over bypass): until ingress LER re-computes path
 - Signaling characteristics:
 - After failure, global repair signaling on a per-LSP basis
 - No exploitation of shared paths to setup MP2P LSPs to a given egress

MPLS in rings: General challenges (cont'd...)

- LDP signaled LSPs:
 - No support for
 - Traffic-engineered paths with constraints
 - Bandwidth accounting
 - Failure protection:
 - Insufficient failure protection coverage using LFA/RLFA in some topologies
 - Too much path computation churn for alternate paths (RLFA)

MPLS in rings: Ring-specific challenges

- Rings: A <u>peculiar</u> topology for MPLS complete-connectivity
- Ring properties => expose opportunities to make MPLS more effective in rings:
 - Excessive # of LSPs: O(N²) LSPs excessive:
 - Excessive: At most 2 paths between a node-pair. All LSPs are path-overlapping.

Original LSP

Protection Path

- O(N²) LSPs' control-plane & data-plane state on nodes
- O(N²) provisioning of LSPs in network
- Wasted bandwidth: Failure-protection causes dual-traversal:
 - From point-of-local-repair (PLR) to ingress
 - From merge-point (MP) to egress

MPLS in rings: Ring-specific challenges (cont'd...)

- Ring properties => Optimizations to enable efficiency in running MPLS
- General-purpose MPLS challenging to use:
 - Too generic in trying to signal LSPs and their protection paths
 - Complete topology coverage: Leads to excessive LSP state than strictly necessary
 - Does not:
 - Give optimal # of LSPs given significant path overlap
 - Utilize local-protection effectively
 - Utilize ring bandwidth effectively

Resilient MPLS Rings (RMR): Benefits

- Concept similar to SDH BLSR (Bidirectional Line Switched Ring)
- All LSPs benefit from:
 - Automatic ring discovery
 - Self-configuring rings
- RSVP-TE signaled LSPs:
 - Easier provisioning
 - Fewer LSPs: lesser control-plane state, less onerous processing, smaller FIB
- LDP signaled LSPs
 - More effective failure protection

RMR: LSP characteristics

- A ring of N nodes has N ring-LSPs
 - Each ring-LSP is:
 - MP2P (has a single egress)
 - Made of two unidirectional sub-LSPs
 - Clockwise (CW), and
 - Anti-clockwise (AC)
 - Either sub-LSP (not both) can carry given flow
 - Any ring-node can send traffic on a ring-LSP
 - Can have varying LSP-bandwidth along its various hops

Rings-LSPs in this ring: RL1 to RL10

Egress for Ruxiis Modec Nx in ring networks

NANOG-65

RMR: LSP characteristics (cont'd...)

Protection:

- Involves switching traffic from affecteddirection sub-LSP to the other-direction-sub-LSP
- Does not use bypasses/detours/etc.

Rings-LSPs in this ring: RL1 to RL10

Egress for Ruxiis Modec Nx in ring networks

NANOG-65

RMR: Easier provisioning

- Ring ID:
 - Configure ringIDs on relevant interfaces of subset of nodes
 - Do not have to configure ringID on every node in ring
 - Promiscuous nodes: nodes not configured with ringID acquire ringID of neighbor node(s)
- Configuration focus on ring and not an LSP
 - Configure rings and not LSPs: so configuration overhead <u>at most</u> O(N)
 - Ring LSPs automatically set themselves up
- Works over ring-links configured as unnumbered links

RMR: Ring auto-discovery

- Ring information propagated through an IGP to
 - Allow ring-nodes in same ring to discover each other
 - Allow for (re)discovery of a maximal ring topology when node/links added/deleted
 - Signal to all nodes in the ring, the ordered list of all nodes participating in the ring in both directions
- Pre-cursor to signaling ring-LSPs

RMR: Ring auto-discovery (cont'd...)

Three phases:

- Announcement phase: Configured ring-nodes advertise ringID. Promiscuous nodes pass same on.
- Mastership phase:
 - Ring-master elected to administer ring-discovery
 - Ring-master decides when the ring-discovery is deemed completed
- Ring identification:
 - Initiated by ring-master on election
 - Concluded by ring-master on it acquiring AC & CW neighbors for the ringID

RMR: Ring in steady-state

- Using RL1 for illustration (Same applies to all LSPs)
- RL1 has N1 as egress node
- 2 sub-LSPs: CW & AC
 - Both terminate at node N1
 - Any node N2 to N10 may
 - Send traffic for a given flow to N1 on either
 CW or AC sub-LSP
 - Utilize both sub-LSPs at the same time

NANOG-65

RMR: Ring during failure

RMR: Ring during failure (cont'd...)

- Post-"failure of link N3-N4": Local repair
 - At N4: AC-sub-LSP switches to CW-sub-LSP
 - At N3: CW-sub-LSP switches to AC-sub-LSP

RMR: Ring during failure (cont'd...)

- Post-"failure of link N3-N4": Global repair
 - No re-signaling of RL1 (i.e. of AC-sub-LSP and CW-sub-LSP)
 - Error propagation on each sub-LSP causes cascaded traffic-switch to the other sub-LSP
 - Switching to AC sub-LSP in order: N3, N2
 - Switching to CW-sub-LSP in order: N4, N5, N6, N7, N8, N9, N10

RMR: Bandwidth management

- Sub-LSPs of a ring-LSP are MP2P
- Path overlap dictates that various hops will have different amount of bandwidth reservations
- Differing per-hop bandwidth reservations and utilizing both sub-LSPs facilitate:
 - Fewer LSP preemptions (compared to regular MPLS) when various ingresses increase bandwidth requirements

RMR: Comparison to regular MPLS:

- RSVP-signaled:
 - Provisioning overhead:
 - Much reduced
 - Configure ringIDs and not individual LSPs
 - LSPs are self-provisioned by ring-discovery
 - # of LSPs: O(N) as compared to $O(N^2)$
 - MakeBeforeBreak (MBB):
 - Only to adjust per-hop bandwidth of LSP
 - No change in labels of LSP during MBB
 - During global-repair: No path re-computation at ingress

- LDP-signaled:
 - Complete ring coverage for protection
 - No micro-loops by design
 - Prior to failure can use both paths

RMR: Features enabled & protocol extensions

- Features enabled:
 - Auto-hierarchy
 - Automatic LAG traversal
 - Flexible load-balancing at ingress
 - More complex aspects:
 - Multiple rings
 - Rings of rings

- Protocol extensions:
 - OSPF/ISIS:
 - Ring discovery extensions
 - RSVP-TE:
 - Ring-LSP 5-tuple definition
 - Per-hop-varying LSP-bandwidth constructs
 - LDP
 - Ring-LSP TLV definition

Summary

- RMR makes MPLS easier to deploy in rings by:
 - Reducing configuration overhead: ring auto-discovery
 - Reducing LSP state in the network thus allowing scale-down of hardware specs (CPU/memory)
 - Enabling more effective bandwidth utilization in the ring
 - Enabling more effective failure protection
 - By reducing link dual-traversal
 - By giving complete coverage for the entire ring

References

Resilient MPLS rings: https://tools.ietf.org/html/draft-kompella-mpls-rmr-01

Thanks