

100G and Beyond Coherent Optical Communications

Kim Roberts

Optical Fiber Communications

Reach Matters in Optical Transmission

(and ladders)

Spectral Efficiency Matters

- Continued exponential growth of 30%-50%
 - >1000 Tb/s of new end-to-end traffic in year 2020
 - Optical Spectrum Squeezed for Bits/Second/Hz

Latency Matters

Chromatic Dispersion

Chromatic Dispersion

Transmitted 10G Signal

Signal after Dispersion

Linear fiber propagation

Traditional solution: Dispersion Compensation Modules

- Coils of 1 to 20 km of special fiber
- 5 μs to 100 μs of added delay per coil
- \$3k to \$10k per module

• Each line amp site needs a specific value of dispersion compensation engineered for a particular end-to-end connection,

Polarization Mode Dispersion (PMD)

Mean PMD

Noise

OSNR

- Optical Signal to Noise Ratio
- Power in optical signal divided by the power in 0.1 nm of the noise spectrum
- Expressed in dB.
- For amplifiers and a line system, delivering a high OSNR is good.
- For a receiver, tolerating a low OSNR is good.

Amplified Spontaneous Emission (ASE)

Amplifiers are used to overcome fiber losses.Optical Noise is added by each amplifier.

$\rho(\lambda) = 2 h v n_{sp} (G(\lambda) - 1)$

Optical Fiber Nonlinearity

- The Kerr effect $n_{NL}(\omega) \approx n(\omega) + n_2 |E|^2$
- Self Phase Modulation
- Cross Phase Modulation

Fiber Attenuation

Figure from http://macao.communications.museum/images/exhibits

Low Loss Fiber

OTDR Built into the Raman Card

Optical Time Domain Reflectometery (OTDR)

24 © Ciena

Polarization of Light

Recall an electromagnetic plane wave (light) propagating in free space:

- E-field has components only in directions orthogonal to propagation.
- Such a wave is linearly polarized in the transverse (X/Y) plane.

Sum of plane waves with differing phase results in arbitrary state of polarization.

Figure: Propagation along vertical axis (<u>http://en.wikipedia.org/wiki/Polarization_(waves)</u>)

25

Dual Polarization

AAAA Vertical Polarization (arraged **Horizontal Polarization** AAAAAAA> AF **Dual Polarization**

Complex Plane of Optical E-field

27 © Ciena

QPSK

Two bits encoded in the phase, per symbol, per polarization.

4 bits x 10 Gsymbols/second = 40 Gb/s

Linear Modulation of E-field

Coherent Transmitter

Spectral Shaping

- Minimize spectral utilization for a given capacity to increase spectral efficiency
- DAC technology enables this

Alien Wavelength

Alien Wavelength

Incoherent Detection

Coherent Detection

Coherent Receiver

WaveLogic 3 Rx ASIC

- 70T ops/s
- 32 nm CMOS
- 150M gates
- 3.7 km wire

WaveLogic 3

Tx DSP DAC

ADC Rx DSP

Chromatic Dispersion

Transmitted Signal

Signal after Dispersion

10G tolerates~1000 ps/nmFlex-3 tolerates300,000 ps/nm

WaveLogic 3 100G Dispersion Tolerance

PMD is Irrelevant with WaveLogic 3

Polarization Mode Dispersion (PMD)

10G tolerates15 ps meanWaveLogic-3 tolerates150 ps mean

Mean PMD

Spectral Efficiency

10G allows 10G/50GHz = 0.2 b/s/Hz Flex-3 allows 400G/80GHz = 5 b/s/Hz

Flexible Latency Soft FEC

	100G	400G
Q-FEC	4 - 35 μs	2 - 18 μs
TX + RX Including Q-FEC	8 - 42 μs	5 - 25 μs

Q-FEC is flexible

- Latency is provisionable.
- Allows tradeoff between performance and latency

QPSK: 100 Gb/s in 50 GHz

Typical Reach with QPSK

Noise Tolerance

- Tolerance to noise and nonlinearity can be used for reach.
- 3500 km is not always needed!
- The same tolerance gives the ability to handle high loss spans, ROADMs, patch panels, and nonlinear interference.

BPSK: Transpacific Reach on Existing Cables

Typical Reach with 16-QAM 400G

Typical Undersea Reach

Flexible Transciever

Received Constellation, X-Polarization

Received Constellation, Y-Polarization

• 35 Gbaud, captured from Rx after 300 km

Production WaveLogic 3 Hardware

• Firmware by Ian Roberts

10GE test set; traffic daisy-chained

Error Free, even during transitions