

IPv6 Security: Oxymoron or Oxycodone?

NANOG 60 – Atlanta
Paul Ebersman – IPv6 Evangelist
@Paul_IPv6, pebersman@infoblox.com

So many new security issues with IPv6!

Or are there...

IPv6 Security issues

Same problem, different name

A few myths & misconceptions

Actual new issues

FUD (Fear Uncertainty & Doubt)

Remember these?

ARP cache poisoning

P2p ping pong attacks

Rogue DHCP

ARP cache poisoning

Bad guy broadcasts fake ARP

 Hosts on subnet put bad entry in ARP Cache

Result: MiM or DOS

Ping pong attack

P2P link with subnet > /31

 Bad buy sends packet for addr in subnet but not one of two routers

 Result: Link clogs with routers sending packet back and forth

Rogue DHCP

Client broadcasts DHCP request

 Bad guy sends DHCP offer w/his "bad" router as default GW

Client now sends all traffic to bad GW

Result: MiM or DOS

Look similar?

Neighbor cache corruption

P2p ping pong attacks

Rogue DHCP + rogue RA

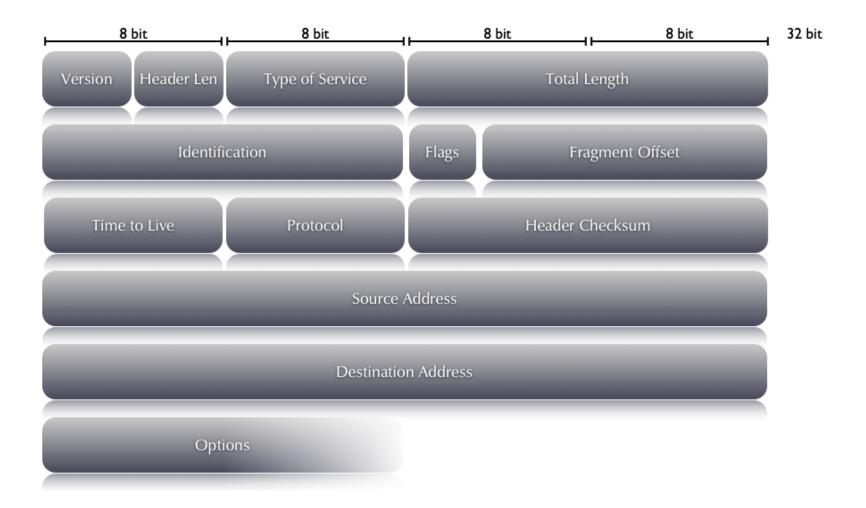
Solutions?

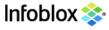
Lock down local wire

/127s for p2p links (RFC 6164)

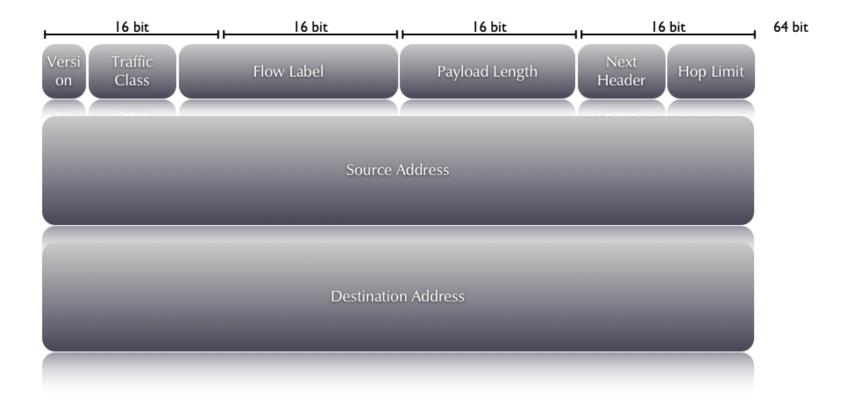
RA Guard (RFC 6105)

And now for something completely different!


So what is new?


Extension header chains

- Packet/Header fragmentation
- Predictable fragment headers
- Atomic fragments
- Tunnels



The IPv4 Packet

The IPv6 Packet

Fragmentation

Minimum 1280 bytes

Only source host can fragment

Destination must get all fragments

• What happens if someone plays with fragments?

IPv6 Extension Header Chains

- No limit on length
- Deep packet inspection bogs down
- Confuses stateless firewalls
- Fragments a problem
- See RFC 7112

Predictable Fragments

Fragment Header ID field

No requirement other than "unique"

Some implementations predictable

draft-gont-6man-predictable-fragment-id

Results of predicting ID

- Determine the packet rate
- Perform stealth port scans
- Uncover the rules of a number of firewalls
- Count the # of systems behind a middle-box
- Perform a Denial of Service (DoS) attack

Atomic Fragments

- Packet w/Fragment Header but not fragmented
- Usually forced by forged "Packet too big" msg
- Fragments can overlap
- Results: various fragmentation attacks possible
- See RFC 6946

Tunnels

ACLs catch port/IP/protocol

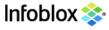
Some IPv6 tunnels don't use standard port/IP/protocol

Signatures

Reality

- Most of these attacks are complicated
- Most attackers are lazy and will find easier vectors of attack

- But, there are toolsets out there:
 - http://www.si6networks.com/tools/ipv6toolkit
- Beat on your vendors!



You're already running IPv6...

"I'm not using IPv6"

Are you running:

- Windows 8, Server 2012, Vista or newer
- Windows clustering
- Mac OSX
- Any modern LINUX or FreeBSD

Guess again

Congratulations, you're running IPv6

Get used to it...

Test now

Train your staff

Beat on your vendors

Monitor it, don't try to disable it

IPSEC: the myth

IPSEC in IPv6 is better than IPv4 because it was designed in and mandated.

IPSEC: the reality

 RFCs said "MUST" support IPSEC (but softening to "SHOULD"...)

Didn't define "support", let vendors do it

Vendors shipped, didn't enable

No PKI...

IPv6 is HUGE!

So big you can't scan it...

Unless you don't really use it...

Use the space we have

Give the whole /64 to DHCP pools

 Randomize address assignments across the whole /64

 Avoid EUI-64 (draft-gont-6man-deprecateeui64-based-addresses)

It's the end of the world as we know it!

IPv6 will destroy the Internet!

Apps will break

Firewalls won't work

ICMP is scary

We don't understand it so it must be insecure

Apps

 Yes, you will need to test and possibly rewrite all your code

 You need to reach everyone, including mobile devices

Most bad ideas also in IPv4 code

If it was wrong in IPv4...

- Hard coding IP addresses
- Not checking inputs/sizes
- Using relative DNS labels
- No longer have source
- Not tested since Y2K

Where to read more

RIPE presentation:

https://ripe66.ripe.net/presentations/134 Making_an_application_fully_IPv6_compliant_(2).pdf

Firewalls won't work

• What do you do if your gear doesn't meet your needs?

Beat on your vendors until it does...

But you need to know what to ask for

ICMP is scary, turn it off!

ICMPv4 wasn't that scary...

ICMPv6 is much more tightly defined

Read RFC 4890

We don't understand it, so...

 If someone is telling you that IPv6 is evil incarnate, it's because:

- They are a vendor that doesn't support
 IPv6 but their competitors do
- They are trying to sell you a security product

Know what you need

And ask for it!

Hold vendors to IPv6 support

- Use the USGv6 standard:
 - http://www-x.antd.nist.gov/usgv6

