Building an IPv6 Address Management System

Athanasios Douitsis
National Technical University of Athens NOC
Outline

• **Background**
 – Full RADIUS-based Prefix Assignment

• **The Greek Student Network (EDUDSL) case**
 – Previous IPv6 setup (IPv4-derived prefix assignment)
 – On-the-fly assignment of static IPv6 prefixes
 – Implementation and performance

• **The Greek School Network (SCH) case**
 – Previous IPv6 setup (manual assignment)
 – Proposed future addressing scheme
 – Static IPv6 assignment method (based on EDUDSL codebase)

• **Conclusion**
 – Best practice: Offset-based storage of IPv6 prefixes
 – Future Ideas
Background: RADIUS-based prefix assignment

- Access network, IPv6 based on SLAAC (PPP) and DHCPv6 PD (Home LAN)
- Assignment of **all** prefixes by the RADIUS server
 - *Framed-IPv6-Prefix, Delegated-IPv6-Prefix*
 - Pro: Most vendor independent solution
 - Con: Complexity in RADIUS server
Case #1

Greek Student Network (EDUDSL)
EDUDSL Overview

- User billing & registration outsourced to ISPs

EDUDSL Proxy RADIUS:
 - IPv4 and IPv6 Address assignment
 - Communication with ISP RADIUS for authentication only

- Complications:
 - Account usernames unknown until time of first login
 - Deleted accounts unknown, time of deletion unknown

Building an IPv6 Address Management System

50 institutions, 15K students

IPv4 + IPv6 Connectivity provided by GRNet

User billing & registration outsourced to ISPs

EDUDSL Proxy RADIUS (IPv4/IPv6 assignment)

Home RADIUS’es (just authentication)

Participating institutions:
- 50 institutions
- 15K students

User: institution@isp.edudsl.gr

EDUDSL E320

GRNet uplink

PTT Authentication request

L2TP tunnel

IPV4 + IPV6 assignment

Cisco Systems Corporate Iconography

Content Service Router

Content Transformation Engine (CTE)

CSU/DSU Detector

CUC

CSM-S

CS Mars

Directory Server

Director-class Fibre Channel director

Distributed Director

DSLAM

DPT

DWDM

Filter

FDDI Ring

Fibre Channel Disk Subsystem

Fibre Channel Fabric switch

File Server

Firewall

FC Storage

Front End Processor

FireWall Service module (FWSM)

General appliance

Gatekeeper

Generic processor

Generic gateway

Generic softswitch

Guard Host

IAD router

ICM

ICS

IOS Firewall

IOS SLB

IntelliSwitch Stack

IP

DSL IP Communicator

IP Telephony Router

IP IPTC

IPTV content manager

IPTV broadcast server

IP Softphone

iSCSI router

ISDN switch

JBOD

Layer 3 Switch

Layer 2 Remote Switch

LocalDirector

Lightweight AccessPoint

Location server

LongReach CPE

MAS Gateway

ME 1100

Mesh AP

Meeting Place

MCU

Metro 1500

MGX 8000

Multiservice switch

L3WAPP W E S N L2TP tunnel
Previous IPv6 assignment method

IPv4 space
147.102.136.0/21

IPv4 user
147.102.143.250

offset
2042 (0x7fa)

Entire pool

PPP
2001:648:2001::/49

Delegated

Framed-IPv6-Prefix
2001:648:2001:7fa::/64

Delegated-IPv6-Prefix
2001:648:2001:87fa::/64
Goal: Static Prefixes per user

- **Static Framed-IPv6-Prefix, Delegated-IPv6-Prefix**
 - Randomly chosen (not deterministic from username)
 - Assigned Per Username
- **Persistence** across changes, reloads, etc.
- **Recycling of Prefixes**
 - Expiration after user inactivity period (e.g. 5 months)
Static Prefix System Requirements

• **On the fly** IPv6 prefix assignment to newly appearing usernames

• **Same already assigned** IPv6 Prefix in subsequent logins of already-seen username

• **Automatic reuse of inactive** prefixes
 – Recycling of least recently used prefix
 – Guaranteed period e.g. 6 months before recycling
 – Retention of prefixes as long as possible

• **Speed:** Requirement for sub-second responses
 – Synchronous to AAA requests
 – Performance monitoring

• Support for subscriber groups ➔ different prefix pools

• **Logging** of past prefixes (audit log)
Static Prefix Assignment Approach

- **Elect one (1) unique static integer offset per user**
 - Used to enumerate Framed, Delegated prefixes
 - Example: **Pool size: 8096 → Offset range: 0 - 8095**

- **Appearance of new username:**
 - If unused offset available → creation of a new record with username, offset pair
 - If no free offsets available → finding record of **oldest offset not in use,** replace username
 - Storing of the **old** username, offset pair in the log

- **Existing username:**
 - Simply: Retrieval of offset already stored for username
Prefix Calculation from Offset

- **Storage of address offset** instead of full prefix
 - Storage in ordinary DB
 - Easier sorting, easier counting
 - Renumbering possible without alteration of thousands of user records
- **Simple change of pool spaces**

Stored offset 431d (16 bits)

Final Delegated Prefix 2001:648:2043:1d00::/56
Implementation

• Perl module
• Integration with FreeRADIUS (rlm_perl)
• MySQL ➔
 – IPv6 Prefix Pools table
 – Static Addresses table (offsets)
 – Log tables (old records log, audit log)

https://github.com/aduitsis/IPv6-Static
Miscellaneous Features

• Grouping feature (many different groups)
• Keeping track of online users (configurable)
 – Double login detection
• Configurable guaranteed inactive address retention
 – e.g. candidacy for recycling after min. 5 months since last logout
• Multiple RADIUS operation on same DB via table locking
Performance Monitoring

Average duration of each different case (create, existing, replace, logout)

Counters for each different case

Drilldown timers for each different type of SQL query
Operational Experience

• Fairly fast (<50 milliseconds per AAA request)
 – Performance monitoring
• In production for almost 2 years
• Start: 1 Initial master pool – almost everybody
• Today: 2 Pools
Case #2

Greek School Network (SCH)
Greek School Network (SCH)

- SCH: Country-wide broadband access network
 - 18000 schools and administrative units
 - Content filtering
 - Information services (web hosting, email)
- >10000 CPEs, 6 BRAS’s, 2 RADIUS servers, LDAP
SCH Previous IPv6 Setup

• In place for almost **10 years**
 – Case study in book “Global IPv6 Strategies: From Business Analysis to Operational Planning”

• Same prefix pool for all units

• **/63** per unit
 – /64 for WAN/PPP, /64 for DHCPv6 PD

• **Manual** assignment of prefixes
 – Maintenance by SCH operators
 – Error-prone, cumbersome

• Vendor specific IPv6 RADIUS attributes
 – **stored verbatim** in directory as `radiusReplyItem(s)`
SCH Future IPv6 Requirements

• Design for another 10 years ahead
• **Static /56** per school → 256 VLANs
 – plus a static /64 for the PPP/WAN link
• **Automated** Prefix assignment/maintenance
• Storage of clean IPv6 prefixes in LDAP (*Vendor neutral*)
 – Extension of LDAP schema with dedicated IPv6 attributes
• RADIUS translates to VSAs **only if necessary**
• Grouping of unit prefixes according to category
 – e.g. high school, administrative, elementary
 – Easier policy enforcement, access lists, content filtering
 • very important for **elementary category**
IPv6 Pool Dimensioning

- Assumption of double space requirements in next 10 years
 - Separate prefix group per unit category

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:648:3410::/44</td>
<td>administrative</td>
<td>4000</td>
</tr>
<tr>
<td>2001:648:3420::/43</td>
<td>high school units</td>
<td>8000</td>
</tr>
<tr>
<td>2001:648:3440::/42</td>
<td>elementary units</td>
<td>16000</td>
</tr>
<tr>
<td>2001:648:3480::/41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building an IPv6 Address Management System
RADIUS and LDAP modifications

• **Directory service (LDAP)**
 – 2 new attributes
 • FramedIPv6Prefix
 • DelegatedIPv6Prefix

• **RADIUS**
 – Framed-IPv6-Prefix (from LDAP attribute)
 – Delegated-IPv6-Prefix (from LDAP attribute)
 – Framed-Interface-ID (TBD: unset, static or random)
 – DNS-Server-IPv6-Address (TBD: static, dynamic)
Software goals

• **Automated** operation

• Batch mode
 – Assign prefix to every unit in LDAP

• Single unit mode
 – Assign prefix to specific unit supplied as argument

• Ability for on the fly **renumbering**
 – In case of IPv6 pools space reconfiguration

• Lifecycle automation (auto detection of creation and deletion of units)
Software requirements

• Update directory entries
• Multiple configurable groups/pools
 – **Different** delegated prefix length per group
• Assignment of framed, delegated prefixes per unit

• **Existing unit** → Retain **same** prefix
• **New unit** → Assignment of **free** prefix
• **Deleted unit** → **Recycle** prefix
 – Deletion / prefix reassignment logging (for audit/accounting purposes)
System Operation Overview

1. Classify unit, get pool for category, get offset for unit
2. Calculate prefixes from offset
3. Store prefixes
4. Read unit
5. If new unit, create a new offset in DB or recycle oldest unused
6. Address assignment software

Building an IPv6 Address Management System
Software code

• Standalone software
 – Contrast with EDUDSL software integrated into EDUDSL RADIUS

• Perl >= 5.14

• Communication with DB & LDAP

• Approx. 35 CPAN module dependencies

• MySQL 5.x
Conclusion & Future Ideas
Best practices

• **Offsets** instead of full prefixes in DB
 – Indexed appropriately ➔ **speed**
• Usage of Prefix Pools to group subscribers
• **Primary storage: DB**
 – Copy in LDAP
 – Ability to recreate all prefixes from DB
• Sparse Mapping(?)
• Single username mode equally important as batch mode
Future Directions

• Addition of triggers for external tools (API)
• Possibility: IPv4 enumeration with same offsets

• Code cleanup
• Some features difficult to actually really test
 – Need more rigorous testing
• More documentation
Lastly: Sparse Allocation of Offsets

<table>
<thead>
<tr>
<th>User Offset</th>
<th>Mapped Offset</th>
<th>User Delegated Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2001:648:3000::/56</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2001:648:3000:400::/56</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2001:648:3000:200::/56</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2001:648:3000:500::/56</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2001:648:3000:100::/56</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2001:648:3000:600::/56</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2001:648:3000:300::/56</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>2001:648:3000:700::/56</td>
</tr>
</tbody>
</table>
Usage of Sparse Allocation (2)

• Described in http://www.ripe.net/ripe/docs/ripe-343#3

• Question: Still useful after extensive offset recycling?

 – Excessive recycling causing “fragmentation” in the pool

 • Defragmentation maybe possible with external tool
Thank you for your attention!
Questions?

athanasios.douitsis@noc.ntua.gr