Building an IPv6 Address Management System

Athanasios Douitsis

National Technical University of Athens NOC

Outline

Background

- Full RADIUS-based Prefix Assignment

• The Greek Student Network (EDUDSL) case

- Previous IPv6 setup (IPv4-derived prefix assignment)
- On-the-fly assignment of static IPv6 prefixes
- Implementation and performance

• The Greek School Network (SCH) case

- Previous IPv6 setup (manual assignment)
- Proposed future addressing scheme
- Static IPv6 assignment method (based on EDUDSL codebase)

Conclusion

- Best practice: Offset-based storage of IPv6 prefixes
- Future Ideas

Background: RADIUS-based prefix assignment

- Access network, IPv6 based on SLAAC (PPP) and DHCPv6 PD (Home LAN)
- Assignment of **all** prefixes by the RADIUS server
 - Framed-IPv6-Prefix, Delegated-IPv6-Prefix
 - Pro: Most vendor independent solution
 - Con: Complexity in RADIUS server

Case #1

Greek Student Network (EDUDSL)

EDUDSL Overview

- User billing & registration outsourced to ISPs
- EDUDSL Proxy RADIUS:
 - IPv4 and IPv6 Address assignment
 - Communication with ISP RADIUS for authentication only
- Complications:
 - Account usernames unknown until time of **first login**
 - Deleted accounts unknown, time of deletion unknown

Previous IPv6 assignment method

Goal : Static Prefixes per user

- Static Framed-IPv6-Prefix, Delegated-IPv6-Prefix
 - Randomly chosen (not deterministic from username)
 - Assigned Per Username
- **Persistence** across changes, reloads, etc.
- Recycling of Prefixes

- Expiration after user inactivity period (e.g. 5 months)

Static Prefix System Requirements

- On the fly IPv6 prefix assignment to newly appearing usernames
- Same already assigned IPv6 Prefix in subsequent logins of already-seen username
- Automatic reuse of inactive prefixes
 - Recycling of least recently used prefix
 - Guaranteed period e.g. 6 months before recycling
 - Retention of prefixes as long as possible
- **Speed:** Requirement for sub-second responses
 - Synchronous to AAA requests
 - Performance monitoring
- Support for subscriber groups \rightarrow different prefix pools
- Logging of past prefixes (audit log)

Static Prefix Assignment Approach

- Elect one (I) unique static integer offset per user
 - Used to enumerate Framed, Delegated prefixes
 - Example: Pool size: 8096 → Offset range: 0 8095
- Appearance of **new** username:
 - If unused offset available → creation of a new record with username, offset pair
 - If no free offsets available → finding record of oldest offset not in use, replace username
 - Storing of the **old** username, offset pair in the log
- **Existing** username:

- Simply: Retrieval of offset already stored for username

Prefix Calculation from Offset

 Storage of address offset instead of full prefix

– Storage in ordinary DB

- Easier sorting, easier counting
- Renumbering possible without alteration of thousands of user records
 - Simple change of pool spaces

Implementation

- Perl module
- Integration with FreeRADIUS (rlm_perl)
- MySQL →
 - IPv6 Prefix Pools table
 - Static Addresses table (offsets)
 - Log tables (old records log, audit log)

https://github.com/aduitsis/IPv6-Static

Miscellaneous Features

- Grouping feature (many different groups)
- Keeping track of online users (configurable)
 Double login detection
- Configurable guaranteed inactive address retention
 - e.g. candidacy for recycling after min. 5 months since last logout
- Multiple RADIUS operation on same DB via table locking

Performance Monitoring

Operational Experience

- Fairly fast (<50 milliseconds per AAA request)
 Performance monitoring
- In production for almost 2 years
- Start: I Initial master pool almost everybody
- Today: 2 Pools

Case #2

Greek School Network (SCH)

Greek School Network (SCH)

- SCH: Country-wide broadband access network
 - 18000 schools and administrative units
 - Content filtering
 - Information services (web hosting, email)

>I0000 CPEs, 6 BRAS's, 2 RADIUS servers, LDAP

SCH Previous IPv6 Setup

- In place for almost **IO years**
 - Case study in book "Global IPv6 Strategies: From Business Analysis to Operational Planning"
- Same prefix pool for all units
- **/63** per unit
 - /64 for WAN/PPP, /64 for DHCPv6 PD
- Manual assignment of prefixes
 - Maintenance by SCH operators
 - Error-prone, cumbersome
- Vendor specific IPv6 RADIUS attributes
 - **stored verbatim** in directory as *radiusReplyItem(s)*

SCH Future IPv6 Requirements

- Design for another **IO years** ahead
- Static /56 per school \rightarrow 256 VLANs
 - plus a static /64 for the PPP/WAN link
- Automated Prefix assignment/maintenance
- Storage of clean IPv6 prefixes in LDAP (Vendor neutral)
 Extension of LDAP schema with dedicated IPv6 attributes
- RADIUS translates to VSAs only if necessary
- Grouping of unit prefixes according to category
 - e.g. high school, administrative, elementary
 - Easier policy enforcement, access lists, content filtering
 - very important for **elementary category**

IPv6 Pool Dimensioning

- Assumption of double space requirements in next 10 years
 - Separate prefix group per unit category

2001:648:3400::/40	2001:648:3400::/44	core network / datacenter	
	2001:648:3410::/44	administrative	4000
	2001:648:3420::/43	high school units	8000
	2001:648:3440::/42	elementary units	16000
	2001:648:3480::/41		

RADIUS and **LDAP** modifications

- Directory service (LDAP)
 - 2 new attributes
 - FramedIPv6Prefix
 - DelegatedIPv6Prefix
- RADIUS
 - Framed-IPv6-Prefix (from LDAP attribute)
 - **Delegated-IPv6-Prefix** (from LDAP attribute)
 - Framed-Interface-ID (TBD: unset, static or random)
 - DNS-Server-IPv6-Address (TBD: static, dynamic)

Software goals

- Automated operation
- Batch mode

– Assign prefix to every unit in LDAP

• Single unit mode

- Assign prefix to specific unit supplied as argument

- Ability for on the fly renumbering

 In case of IPv6 pools space reconfiguration
- Lifecycle automation (auto detection of creation and deletion of units)

Software requirements

- Update directory entries
- Multiple configurable groups/pools
 - Different delegated prefix length per group
- Assignment of framed, delegated prefixes per unit
- Existing unit → Retain same prefix
- New unit \rightarrow Assignment of free prefix
- Deleted unit \rightarrow Recycle prefix
 - Deletion / prefix reassignment logging (for audit/ accounting purposes)

System Operation Overview

Software code

• Standalone software

 Contrast with EDUDSL software integrated into EDUDSL RADIUS

- Perl >= 5.14
- Communication with DB & LDAP
- Approx. 35 CPAN module dependencies
- MySQL 5.x

Conclusion & Future Ideas

Best practices

- Offsets instead of full prefixes in DB
 Indexed appropriately → speed
- Usage of Prefix Pools to group subscribers
- Primary storage: DB
 - Copy in LDAP
 - Ability to recreate all prefixes from DB
- Sparse Mapping(?)
- Single username mode equally important as batch mode

Future Directions

- Addition of triggers for external tools (API)
- Possibility: IPv4 enumeration with same offsets

- Code cleanup
- Some features difficult to actually really test

 Need more rigorous testing
- More documentation

Lastly: Sparse Allocation of Offsets

User Offset	Mapped Offset	User Delegated Prefix
0	0	2001:648:3000::/56
I	4	2001:648:3000:400::/56
2	2	2001:648:3000:200::/56
3	5	2001:648:3000:500::/56
4	I	2001:648:3000:100::/56
5	6	2001:648:3000:600::/56
6	3	2001:648:3000:300::/56
7	7	2001:648:3000:700::/56

Usage of Sparse Allocation (2)

- Described in <u>http://www.ripe.net/ripe/docs/ripe-343#3</u>
- Question: Still useful after extensive offset recycling ?
 - Excessive recycling causing "fragmentation" in the pool
 - Defragmentation maybe possible with external tool

Thank you for your attention! Questions?

athanasios.douitsis@noc.ntua.gr