

NANOG 58 June 4th, 2013

Evolution of Services and Architecture at Internet2

Chris Spears

Sr. Network Planning Architect, Internet2

Internet2 Architecture

Internet2 Background

- National Research & Education Network (NREN)
- Formed in 1996 by 34 research universities
 - Need for a network focused on needs of researchers
- What is a Research Network?
 - http://www.nanog.org/meetings/nanog52/presentations/Monday/
 Oberman-NANOG-Research%20Networks-Final.pdf
- Different set of needs among researchers
- "Big Data" and moreover "Big Science" as driver
- More: <u>internet2.edu/about</u>

Internet2 Community Makeup

- 220 U.S. universities (over 4.5M enrollment)
- 60 leading corporations
- 70 government agencies
- 38 regional and state education networks (sponsored participants, K-12, etc)
- > 100 R&E partners, representing more than 50 countries

Evolution of Services and Architecture at Internet2 INTERNET® Infinera DTN Ciena ActivFlex 6500 SDN Services Advanced Layer-2 Service OpenFlow at 100G NDDI OpenFlow testbed (10G) CoreDirector Dynamic Circuit Network (OC-192) **GENI** IP Services: IPv4, IPv6, Multicast, MPLS ION Peering Service TR-CPS OC-48 OC-192 10GE 20GE 30GE LHC-Open Network Environment Layer-0/1 Dedicated Network Services -----2004---2006--2011-Future 0/4/13, © 2012 IIILEITIELZ

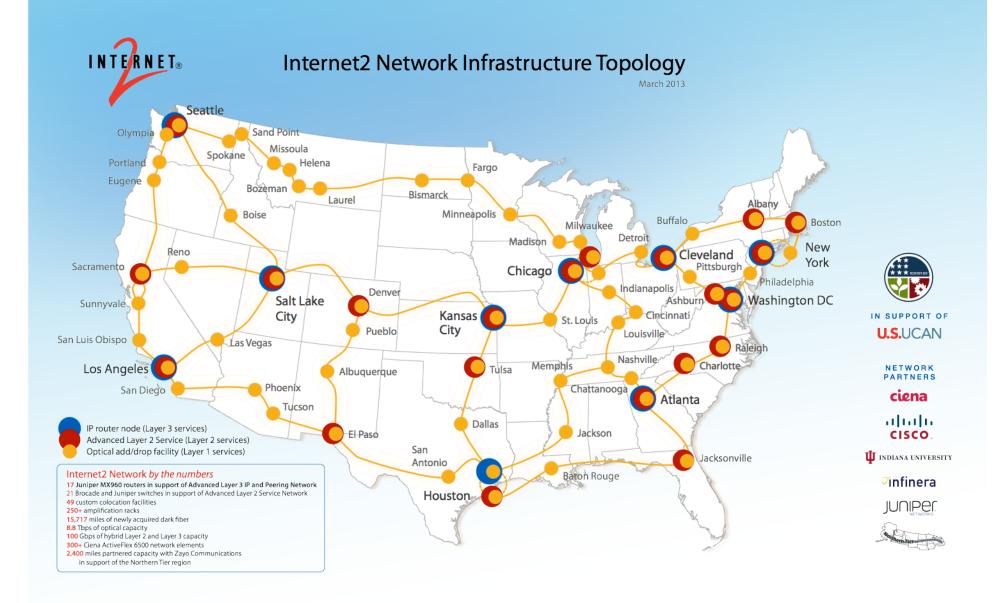
Internet2 Network Evolution: IP Services

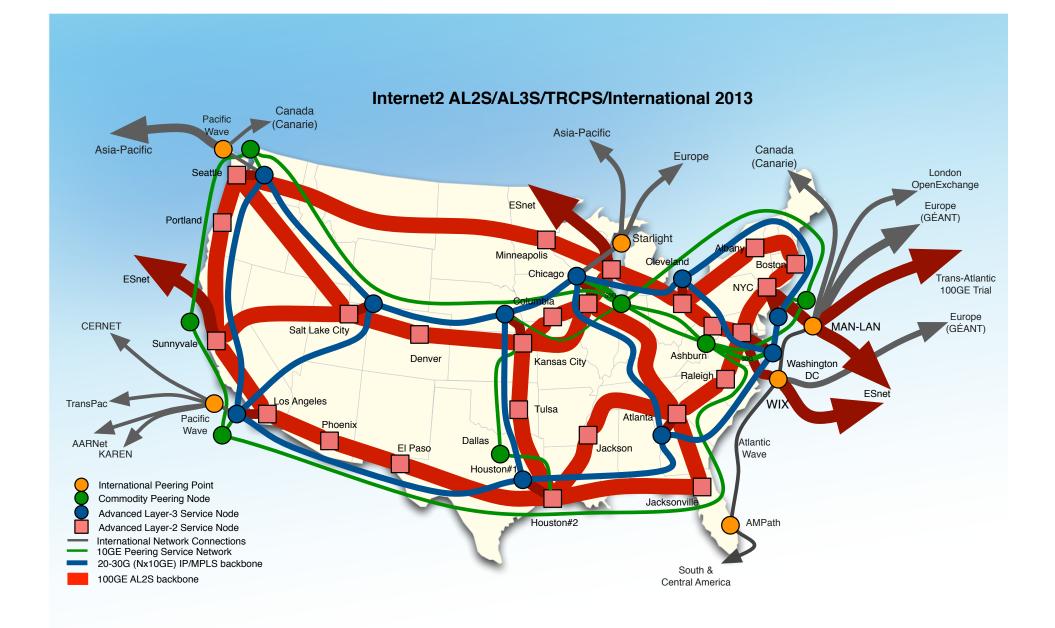
- IP Services multicast, IPv6, long ago...
- 1999 OC-48, partnership with Qwest
- 2004 OC-192c
- 2006 10G+, partnership with Level(3), Infinera DTN network
 - 100G (10x10) of capacity allowed growth outside of IP services
 - IP continued to grow, upto 30G inter-node capacity
 - New topologies to support research and experimentation
 - Peering service
- 2010 NTIA BTOP award
 - 2011 began building current optical infrastructure
 - Supports even greater scale of services, networks, and applications

Internet2 Optical Network Today

- 15,717 route miles of dark fiber (predominantly Level3, Zayo)
 - 51 optical add/drop sites (and growing)
 - 341 optical facilities across U.S.A.
- Ciena ActivFlex 6500 platform
 - 50GHz ITU grid spaced, 88-channels, DIA (directionless) in metros
- Partnered with ESnet at Layer-1
- 100G penetration:
 - 172 100G coherent DP-QPSK transponders deployed
 - Core L2/L3 interfaces: >70 (still adding nodes & links)
- 144 40G transponders solely for OTU multiplexing of 10GE
- 100GE Firsts
 - Transcontinental (N.A.) October 2011
 - Transatlantic June 2013

Internet2 Network Evolution: Layer-0/1


- Custom Network Infrastructure supporting science & research
 - ESnet http://es.net/
 - NOAA http://noc.nwave.noaa.gov/
 - GENI http://www.geni.net/
 - LHC-Open Network Environment http://lhcone.net/
 - XSEDE https://www.xsede.org/
- Shared Infrastructure partnerships
 - Dark fiber, spectrum, OTU multiplexers
- Dedicated Infrastructure for Internet2 networks


Internet2 Network Evolution: SDN

- History of experimenting with new technologies
- Dynamic network services, driven by software..... a.k.a. SDN
 - Hybrid Optical-Packet Infrastructure (HOPI)
 - GENI Slice-able, experimental network substrate
 - Dynamic Circuit Network (DCN)
 - 22 Node OC-192 network, Ciena CoreDirector
 - ION Internet2-ON demand circuits
 - Dynamic pseudowires, speaks OSCARS IDC protocol
 - NDDI OpenFlow testbed
 - Advanced Layer-2 Service (discussed later in this presentation)
 - 100GE backbone, 18 nodes; 25 by end of summer 2013
 - Built as an Open Exchange

Edward Balas

Manager, Software Engineering, Indiana University GlobalNOC

SDN at Internet2

Origins of SDN at Internet2

- Historic projects have pushed for programmatic network control
 - HOPI
 - ION
 - NDDI
 - AL2S
- Motivated by desire to more quickly create new virtual networks
 - Give members ability to directly create
 - Remove unneeded provisioning delays
 - Concerned about quality and control
- The historic use case = National Exchange Fabric

Internet2 Innovation Platform

Key Ingredients

- Big Pipes(100g) with minimal aggregation
- Open the network stack for non-vendor driven innovation
- Domain expert involvement in developing new services
- Means to separate experiment and production

Goal

- Create an improved experience for R&E Users
- We want to find applications that better fill the pipes with science
- Make it easier to move data so folks can focus on discovery

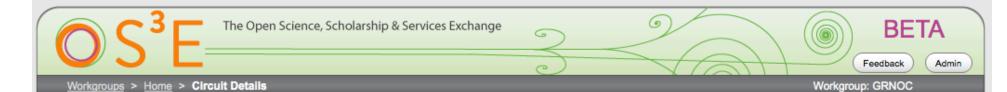
Enabler

- OpenFlow 1.0 today, 1.3 someday
- Any cross platform SDN techniques we can find in future

Innovation Platform

TestLab

- Mixed vendor 8 switches and 6 test PCs
- MEMS switch to control layer1 topology
- Jenkins based test automation system


NDDI

- 5 NEC PF5820 switches
- 10GE core
- Ring Topology

AL2S

- 15 Brocade MXLe-16, 3 Juniper MX960
- 100GE core
- Partial mesh topology
- OESS used to provide point and click provisioning

Summary

Description losa-salt test

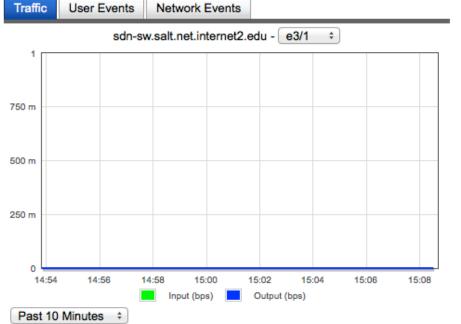
Bandwidth 0 Mbps

Type Local

Status active

Primary Path

Endpoints


Interface	VLAN
sdn-sw.losa.net.internet2.edu - e15/2	601
sdn-sw.salt.net.internet2.edu - e15/2	601

Edit Circuit

Remove Circuit

Available Link Down Link

Secondary Path

What the Innovation Platform is NOT

- Just a playground
 - We do encourage responsible experimentation
 - It is an involved process to get into the AL2S network
- Just a testbed
 - We do at-scale operation of OpenFlow Apps
 - Some are experimental
 - Others are considered production grade
 - There are risks that experiments will interfere with production traffic
 - We try to manage risk with technology and policy

Multi-Tenancy a key feature

- Running 2 separate production and research platforms too costly
- Goal
 - Run a production platform with a virtual SDN net built on top
 - Support multiple simultaneous applications / controllers
 - Minimize trust placed in applications
- Approach
 - Separate flow control by Switch / Port / Vlan Tag
 - Use FlowVisor etc to logically "slice" or partition the network
 - Each app gets a limited and non-overlapping "flowspace"
 - Customers define which apps can control their port's flow space
 - Traffic Engineering a concern in some cases
- Implementation
 - Evaluating FlowVisor
 - Exploring other options including use of overlay networks

Internet2 Innovative Application Award

- http://www.internet2.edu/network/innovative-applicationawards.html
- Goal
 - Encourage development of SDN applications
 - Improve scientific data movement at 100G
 - Engage *.edu to developing network scale applications
- Sponsored by Juniper, Ciena and Brocade
- Modest (up to 10k) cash prize to support effort
- Apps must work on AL2S and be licensed modified Berkeley

OpenFlow Issues and Lessons Learned

Availability for last 6 months

- For last 6 months, *including* maintenance windows
 - 99.69% for circuits
 - 99.25% for nodes
- Single worst node event was 25 hr outage
 - Bug in controller related to corner case
 - Only alarm triggered was ISIS adjacency alarm
 - Prolonged by initial miss-diagnosis
- Circuit availability issues
 - Having 100G optic issues with some vendors
 - Non-trivial number of optical system upgrades during this period

Vendor Issues

- Partial support for specification
 - Match and act on both layer2 and layer3
 - Proper barrier support
 - Support for actions in hardware
- Stability problems
 - Various issues
- Performance issues
 - Port down event generation
 - > 1.5 sec for some!
 - Modify-State processing speed
 - ~100 / sec
 - Total number of supported rules
 - ~2,000

Protocol Issues

- OpenFlow 1.0 is not the best protocol
 - Too much left to vendor interpretation
- Inherent DoS risks, if you don't trust your north bound
 - No rate limits on packet in
 - No rate limits on packet out
 - Table space exhaustion
- Feature set lacking to replicate existing services
 - No viable QoS
 - No TTL decrement
 - No push / pop VLAN or MPLS tags
- Reacting to network events requires controller round trip
 - Fast Failover Port groups in 1.3 should be a win

Testing effort for last 6 months

- Vendor interaction still fairly intense
- Perform full system testing when we get a new code revs
 - Vendor code
 - 3 vendors, 6 total releases
 - 20 50 hours per test
 - Application Code
 - 1 vendor (us), 4 releases
 - 30 40 hours per test
 - Hypervisor/slicer code
 - 1 vendor, 2 releases
 - 20 50 hours per test
- More than 50% of lab time is spent helping vendors
- At least 50% of an FTE

Management Network

- Today use central controller cluster over dedicated management network
 - side band on the OSC channel
 - Limited bandwidth
- Management network disruptions impact OpenFlow operation
 - If shared fiber plant, OpenFlow restoration blocks on management network restoration
 - Traffic continues to flow, just black hole on failed link
 - Distributed controller architecture can help
 - Requires you mimic a routing protocol to avoid dependency
 - Port groups in 1.3 can also help

WAN OpenFlow Application Architecture

- Robust WAN capable apps are hard
- There is a reason for separating IGP from EGP
- Do WAN apps need to control the interior path?
 - If yes, do you trust to developer to perform TE
 - If no, how do you constrain bandwidth
- Considerations
 - Ability to function with partial management network disruption
 - Restoration performance
 - System complexity and cost of operation / testing

Future Challenges

- Working together to develop better testing regiments
- Migrating to 1.3 to get sought after features
- Developing better sw ecosystem
 - Truly distributed controllers
 - Standard north bound interfaces
- Refining our operations capability
 - Better monitoring and troubleshooting
 - What is the craft interface to an OpenFlow device or app?
 - Operations support team structure
 - With WAN multi-tenancy, where to Engineer Traffic?

Questions?