On The Hidden Nature of Complex Systems

Tradeoffs, Architecture, Nets, Grids, Bugs, Brains, and the Meaning of Life

David Meyer
CTO and Chief Scientist, Brocade
Director, Advanced Technology Center, University of Oregon
NANOG 61
June 02-04 2014
Bellevue, WA
dmm@{brocade.com,uoregon.edu,1-4-5.net, ...}

http://www.1-4-5.net/~dmm/talks/nanogb1.pptx

Agenda

Too many words, too many slides ©
— This talk is about thinking about networking in new ways

Motivation and Goals for this Talk

What is Complexity and Why is it Hidden
— Robustness, Fragility, and Complexity

The Architecture of Complex Systems
— Universal Architectural Principles

A Few Conclusions and Q&A if we have time

Danger Will Robinson!!!

‘ ~—\ | I)
= - SIS
X J .
~ - g i 1
< E . L4
> — -
< h
| 2 “h
" - - v 4
] N B y ‘."‘.
4 : TR

!

—_—
-~
-
—

”\“H““

D |

]
I

Thi%&Qight be controversial/provocative
(and perhaps a bit “sciencey”)

So How Did | Get Involved In All Of
This Complexity Stuff?

=g

It all started here, circa 2000

5/28/14
16

What Happened?

Somewhere around 2000 | was re-org’ed to report up through Kansas City
— along with all of the Sprintlink folks
— Kansas City was famously the home of Pin Drop, ATM, Frame Relay, TDM, and the like

We had been talking about how IP was so much “simpler” that FR/ATM/TDM/..
Predictably, first question | was asked by the KC folks was:

— If the IP network is so much simpler, why is its OPEX/CAPEX profile so
much higher (than ATM, FR, or TDM)?

| could not answer this question
— Seriously, | had no clue

— There was all kinds of talk about FCAPS, NMS, etc, but none of it was
helpful/quantitative

So | set out to understand how | might answer it
— First by surveying the “complexity” literature
— And BTW, what was complexity?

— And surely there was a quantitative way to compare circuit and packet switched
networks

e ..Or not 5

One Result of this Exploration was RFC 3439

(Some Internet Architectural Guidelines and Philosophy)

The Simplicity Principle

m The Simplicity Principle states that "Complexity is the
primary mechanism which impedes efficient scaling,
and as a result is the primary driver of increases in
both capital expenditures (CAPEX) and operational
expenditures (OPEX)."

e Corollaries
» KISS Principle
» Law of Diminishing Returns
» Related: Occam's Razor

m That is, if you don't keep designs and implementations
as simple as possible, it is going to wind up costing
you both more to operate your network (OPEX), and
more to grow as your business grows (CAPEX)

2

e But how simple is "simple as possible"?

Mike O’Dell, by all accounts. See http://www.1-4-5.net/~dmm/talks/NANOG26/complexity panel/

All Cool But Still, What is Complexity?

* Well, the “Simplicity Principle” didn’t tell us what
complexity is or where it comes from

— We thought it had to do with coupling and amplification
— The “SP” itself had no explanatory or predictive power

 Worse: Simplicity Principle approach contained a
classic error

— Confused symptoms (amplification, coupling) with root cause

— Not to mention there was *no* theoretical/mathematical framework
that we could lean on

e Result: over the past 12+ years I've been working with
folks in the Control Theory, Systems Biology, and

Engineering communities to try to get at this question
— and understand its practical implications for engineers (us)

So | Started Looking At

The History of (Building) Construction
(why? Fred Harris)

Engineering Heuristics Heuristic Materials “Science” Mathematical Models

|F||sin 8

>

> T=|r

Heuristic Knowledge

Engineering Heuristics Models

Basic idea: Engineering heuristics take us a long (long) way, but if we want to scale
beyond a certain point (say, build a 1000m tall building) we need a model of the
building so we predict its behavior (likely including some knowledge of physics)

Applied to Scaling the Internet?

IPv4 INTERNET
TOPOLOGY MAP

GUiBlaree

2732 27128

Engineering Heuristics 2777
(sort of)

96 binary orders of magnitude
(ok, call it half)

GUiBlaree

Models

maximize Z Us (xs: Pe.s) + Z Vl(wj)

3 subject to Rx < ¢(w,P.),
x € Ci(P.), x€CxF) or €Il(w),
[§ ReR, FeF, weW.

Graphic courtesy CAIDA

So Goals for this Talk

* Characterize the essential features of complexity
— and where find complexity both technological and biological systems

* Examine fundamental tradeoffs
— that are made in complex systems

* Explore universal architectural features
— and how they are related to tradeoffs and complexity

* Describe the relationship between complexity, tradeoffs, and layering
— and how they can be part of a useful theoretical framework

* Begin to Bridge the Engineering and Theory Networking Communities
— Theorists need to know what engineers known (what is real?), and
— Engineers need the tools that we can get from theorists...

1 “Engineers always know first” —John Doyle

Said Another Way...

The major goal of this talk is to open up our
thinking about what the essential architectural
features of our network are, how these features
combine to provide robustness (and its dual,
fragility), and how the universal architectural
features that we find in both technological and
biological networks effect Internet robustness,
scalability and evolvability.

What is Complexity and Why is it Hidden?
— Robustness, Fragility, and Complexity

The Architecture of Complex Systems
— Universal Architectural Principles

A Few Conclusions and Q&A if we have time

Ok, what is Complexity?
(and why is it hidden)

Complexity is (mostly) hidden structure that arises in systems

Its purpose is to create robustness to environmental and component
uncertainty

Hidden?

— Anti-lock/anti-skid brakes, packet loss (TCP), linux kernel, power grids, cloud
stacks, SDN controllers, lunar landing systems, ...

— You don’t notice they are there...until they fail
* often catastrophically

Why Hidden?
— the hidden nature of complexity is a fundamental property of these systems

— derives from universal architectural principles of complex systems (layering,
constraints that deconstrain)

— and is required to make robustness and evolvablity compatible

But isn’t complexity evil?
— and we’ll get to what robustness is in a sec...

|II

Complexity Isn’t Inherently “Evi

Domain of the Robust

C

Pmax

Increasing number of policies, protocols, configurations and interactions (well, and code)
=

15

So What Then is Robustness?

Robustness is a Generalized Feature of Complex Systems

Scalability is robustness to changes to the size and
complexity of a system as a whole

Reliability is robustness to component failures
Efficiency is robustness to resource scarcity
Modularity is robustness to component rearrangements

So robustness is a very general idea

— and captures many of the features we’re seeking from the network

A Bit More Formally

Robustness is the preservation of a certain property in the presence of uncertainty in
components or the environment
— Obviously a core Internet design principle

— Systems Biology: Biological systems are designed such that their important functions are
insensitive to the naturally occurring variations in their parameters.
* Limits the number of designs that can actually work in the real environment
* Exact adaptation in bacteria chemotaxis

Fragility is the opposite of robustness

— Another way to think about fragility
* Technical: You are fragile if you depend on 2nd order effects (acceleration) and the “harm” curve is concave

— Alittle more on this in the next few slides...

A system can have a property that is robust to one set of perturbations and yet fragile for
a different property and/or perturbation - the system is Robust Yet Fragile
— Or the system may collapse if it experiences perturbations above a certain threshold (K-fragile)

For example, a possible RYF tradeoff is that a system with high efficiency (i.e., using
minimal system resources) might be unreliable (i.e., fragile to component failure) or hard
to evolve

— VRRP, ISSU, HA, TE, {5,6,7..}-nines, ...

— Complexity/Robustness Spirals

Robust Yet Fragile?

(seems like a contradiction)

[a system] can have Yet be fragile for
a property] that is robust to |]
a set of perturbations] Or |]

Recent results suggest that the RYF tradeoff is
a hard tradeoff that cannot be overcome*

Ro b ust f This is profound: If you create robustness
. somewhere you will create fragility

somewhere else...OK, but where?

Network Engineering, along with most other
engineering disciplines, does not explicitly (or
otherwise) account for this effect

Harm Function: Concave = Fragile, Convex = Robust

18

1 See Marie E. Csete and John C. Doyle, “Reverse Engineering of Biological Complexity”,

Interestingly, Fragility and
Scaling are Related

* Abit of a formal description of fragility
— Let z be some stress level, p some property, and
— Let H(p,z) be the (negative valued) harm function
— Then for the fragile the following must hold

* H(p,nz) < nH(p,z) for0<nz<K
* 2 Abig event hurts non-linearly more than the sum of small events

* For example, a coffee cup on a table suffers non-linearly more from large deviations

(H(p, nz)) than from the cumulative effect of smaller events (nH(p,z))
— Sothe cup is damaged far more by tail events than those within a few o’s of the mean

— Sensitivity to tail events 2 RYF
— Too theoretical? Perhaps, but consider: ARP storms, micro-loops, congestion collapse, AS 7007, ...

— BTW, nature requires this property
* Consider: jump off something 1 foot high 30 times v/s jumping off something 30 feet high once

* So when we say something scales like O(n?), what we mean is the damage to the
network has constant acceleration (2) for weird enough n (e.g., outside say, 3 o)
— Again, ARP storms, congestion collapse, AS 7007, DDQOS, ... = non-linear damage

Coffee cup example courtesy Nassim Taleb. See http://www.fooledbyrandomness.com

So Its All About (RYF) Tradeoffs

Theorem: R < l

C Biology and technology

Find a new

robust e% % oo

simple hard
Complexity

fragile

BTW, RYF Behavior is Everywhere

Robust Yet Fragile
© Efficient, flexible metabolism @ Obesity and diabetes
© Complex development @ Rich microbe ecosystem
© Immune systems @ Inflammation, Auto-Im.
© Regeneration & renewal @® Cancer
Complex societies 2 Epidemics, war, ...
Advanced Technologies ¢ Catastrophic failures

* “Evolved” mechanisms for robustness allow for, even facilitate, novel, severe
fragilities elsewhere. That is, they are RYF-Complex

* Often involving hijacking/predation/exploitation of the same mechanism
— We've certainly seen this in the Internet space (consider DDOS of various varieties)

* These are hard constraints (RYF behavior is conserved)

Summary: Understanding RYF is The Challenge

* It turns out that managing/understanding RYF behavior is the most
essential challenge in technology, society, politics, ecosystems, medicine,
etc. This means...

— Understanding Universal Architectural Principles
* Look ahead: Layering, Bowties/Hourglasses, Constraints that Deconstrain
— Managing spiraling complexity/fragility
— Not predicting what is likely or typical TR

 But rather understanding what is catastrophic P
* orin Taleb’s terminology, that which is fat tailed

. ,fAnd_lBT_W, it is much easier to create the robust features than it is to prevent the
ragilities
— And as | mentioned, there are poorly understood “conservation laws” at work?

e Bottom Line

— Understanding RYF behavior and associated
tradeoffs means understanding network
architecture and the hidden nature of complexity

1See Marie E. Csete and John C. Doyle, “Reverse Engineering of Biological Complexity”,
http://www.cds.caltech.edu/~doyle/wiki/images/0/05/ScienceOnlinePDF.pdf

Open source s good for me. 1 will fully embrace &

Open source s good for me. 1 will fully embrace &
nha,\ TNy wrm 8 :‘. f-ﬁhf‘(Cfng' SO 1 a l:“ -p -"\4' dMLmA"’- ~ 8 $

So what are the fundamental
tradeoffs that we are making, and is
there a more general way to think

about them? But first...

23

What tradeoffs are embedded in
what we do everyday?

def add5(x):
return x+5

00 00 00 00 00 00 60 03 00 00 00
00 00 00 14 00 00 60 00 00 00 00 07 060 00 00
00 00 00 00 00 00 00 AO 03 40 00 00 060 00 00

60 60 60 18 60 60 60 00 00 00 00 FE FF FF 6F .. : def dotwrite(ast):

60 00 00 00 00 00 60 FO FF FF 6F 00 00 00 00 b nodename = getNodename()

60 00 00 00 60 60 60 6 60 60 60 00 00 00 00 t. label=symbol.sym name.get(int(ast[0]),ast[0])
60 00 00 00 00 60 60 6 60 60 60 00 00 00 00 print s [label="%s"' % (nodename, label),
60 00 00 00 00 60 60 66 60 60 60 00 00 00 00 if isinstance(ast[1], str):

00 60 60 60 60 00 00 36 64 40 00 06 00 00 60P.'.... 6.0 if ast[1l].strip():

00 00 60 06 00 60 60 06 60 60 00 47 43 43 3A F.@ : print ‘= %s"];" % ast[1]

203175 6275 6E 74 75352920 34 2 36 2F (Ubuntu/Llnaro463lubuntu5)46 else: .

687374 72746162 00 2 69 6E 74 657270 3...syntab..strtab..shstrtab..interp Lse: print ")

67 6E 75 2 62 75 69 6C 64 20 69 64 00 2E 67 ..note.ABI-tag..note.gnu.build-id..g . s:;'int "

74 72 00 2E 67 6E 75 2E 76 65 72 73 69 6F 6E nu.hash..dynsym..dynstr..gnu.version

2E 64 79 G6E 00 2E 72 65 6C 61 2E 70 6C 74 00 ..gnu.version_r..rela.dyn..rela.plt. for n, child in enumerate(ast[1:]):
64 61 74 61 00 2E 65 68 5F 66 72 61 6D 65 SF .init..text..fini..rodata..eh_frame_ children. append(dotwrzte(chlld))
2E 64 74 6F 72 73 00 2E 6A 63 72 00 2E 64 79 hdr..eh_frame..ctors..dtors..jcr..dy print s -> {" % nodename,

64 61 74 61 00 2E 62 73 73 00 2E 63 6F 6D 6D namic..got..got.plt..data..bss..comm for name in children:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 print S % name,

00 00 00 00 00 00 00 00 00 00 00 1B 00 00 00

children = [)

What tradeoffs are being made here?

Speed vs. flexibility?

24

How About Here?

Guest Guest Guest
Operating Operating Operating
System System System

Virtualization Application

Host Operating System

Host Hardware

Speed vs. flexibility (bare metal vs. VM vs. container)?

25

Summary: Common Tradeoffs

Binary machine code vs. (interpreted) higher-level language
VM vs. bare metal (vs. container)

Fast path vs. slow path

Hardware vs. software

Convergence time vs. state

But what are the essential features of these tradeoffs?
— What is fundamental in the tradeoff space?
* And are there “laws” governing these tradeoffs?
* And can we derive useful engineering laws from these “laws”?
— And how do they relate to RYF-complexity?

Turns out that RYF tradeoffs are fundamental

Example: Computational Complexity
Layering, Formal Systems, Hard Tradeoffs

bist 7
alzp} = =

7

Theorem: R < lﬂ

FlexHsneple Inflexibie
General Complesmyial

Original slide courtesy John Doyle

Drilling down a bit on the Computational
Complexity Tradeoff Space (changing axes)

Undecidable O Decidable 2O NP D P?

Flexible/ Inflexible/
General Specific

Another Example: Feedback Control Theory

(Gain/Sensitivity Tradeoff In Feedback Control)

/XI In |S(iw)|dw = /x In 1
Jo Jo

dw =7 Re(py) - gslglolc sL(s)

5\

1+ L(iw)

Bode Sensitivity Integral

Tradeoff = Law

1

ﬂo(\’é\e(Theorem: G = —
an\e P
geas®
adeoﬁ
XS

Precise Sloppy
Precision

Example: Laminar Flow

fragile \\ Laminar
\
\
\
\
\
\\
P
robust . \~~____

efficient wasteful

Fragile

Slow

In reality the tradeoff
space is of higher dimension

Fast

/ . 1
Cheap " Flexible Inflexible

Expensive ’

Robust

Hopefully not too high dimension: The Curse of Dimensionality

_ Rel agility_and Complex

The Architecture of Complex Systems
— Universal Architectural Principles

A Few Conclusions and Q&A if we have time

The Architecture of Complex Systems

What we have learned is that there are universal architectural
building blocks found in systems that scale and are evolvable.
These include

Architecture/Layering
Laws, constraints, tradeoffs

Protocol Based Architectures
Massively distributed with robust control loops

Consequences
— Hidden RYF Complexity

— Hijacking, parasitism, predation

33

So What Do We Know About Architecture?

(What is the fundamental architecture of complex systems?)

Deconstrained
(Applications)

Diverse Apps
Core Protocols Constrained
and hidden OS
Diverse HW

Deconstrained
(Hardware)

34

Slide courtesy John Doyle

Bowties, Hourglasses and Layering

Bowtie
Universal Carriers

- Universal Architectural Principles

* Bowties for flows within layers (protocol)

* Hourglasses for layering of control (stack)
» Constraints that Deconstrain

Hourglass

Bowties 101

Constraints that Deconstrain
Schematic of a “Layer”

input == cOore == output

high variability high variability
less constraints less constraints

more constraints
less variability

For example, the reactions and metabolites of core
metabolism, e.g., Adenosine Triphosphate (ATP) metabolism,
Krebs/Citric Acid Cycle, ... form a “metabolic knot”. That is, ATP
is a Universal Carrier for cellular energy.

1. Processes L-1 information and/or raw material flows into a “standardized” format (the L+1 abstraction)
2. Provides plug-and-play modularity for the layer above
3. Provides robustness but at the same time fragile to attacks against/using the standardized interface

36
See Kirschner M., and Gerhart J., “Evolvability”, Proc Natl Acad Sci USA , 95:8420-8427, 1998.

But Wait a Second

Anything Look Familiar?

>
=
<
£

email WWW phone...
SMTP HTTP RTP...)
TCP UDP...

high variability
less constraints

P

few

more constraints
less variability

ethernet PP%
{ CSMA async sonet...\

copper fibre radio...

input ===md core mmmmd output

high variability
less constraints

Bowtie Architecture Hourglass Architecture

Comes down to whether you see layering as horizontal or vertical

37

The Protocol Hourglass idea appears to have originate
apb g R- e AB-

d with Steve Deering. See Deering, S., “Watching the Waist of the Protocol Hourglass”, IETF 51,
2001, http://www.iab.org/wp-content/IAB-upload g - ie

The Nested Bowtie/Hourglass
Architecture of the Internet

Layering of Control
y g9 f HTTP Bowtie
] Input: Ports, Datagrams, Connections

Output (abstraction): REST

‘ TCP/UDP Bowtie
email | WWW | phone | ... Input: IP Packets REST

Output (abstraction): Ports, Datagrams, Connections A
SMTP | HTTP | RTP | ...

ethemet | PPP | ...

{ maximize Z U (x;)
CSMA | async | sonet | ... s
subject to Rx < c.

suonanisqy/jodyuo) Jo buliaAoi

copper | fier | radio | ... o
Flows within Layers ———>

38
Reverse/forward engineering of TCP as a Network Utility Maximization (NUM) problem

In Practice Things are More Complicated
The Nested Bowtie/Hourglass Architecture of Metabolism

Autocatalytic feedback Polymerization
and complex
assembly
Taxis and
transport
\ .
4 Core metabolism Proteins
)] 5\)¢‘5
% S | pino AOKS Wy
= Catabolism | 5 . . egulation
‘25 g‘f Nucleddes 5| Trans” | and dontrol
\ o | “Fattyaggg
Carriers

\

S ———

Regulation & control

TRENDS in Biotechnology

See Csete, M. and J. Doyle, “Bowties, metabolism and disease”, TRENDS in Biotechnology, Vol. 22 No. 9, Sept 2004

Key Architectural Concept: Horizontal Trap A
\3

Deconstrained
Applications)

Horizontal Diverse
App
Transfer 0% (@9
Y)
eé AN
(& W? "
‘\‘@ * fained —
orizonta
\9 Ardware) HW Transfer

40

Putting it all Together
Architecture, Layering, and Tradeoffs

Unconstrained/Diverse

S Tradeoff “Frontier”

‘/OS Constrained/Hidden

HW

Unconstrained/Diverse

Fast

Flexible Inflexible

General Special

Example: Internet Architecture

Unconstrained/Diverse

[Source A] [Source B] [Source C]
5 i ~

Slow
Constrained/Hidden
Standardized Contracts
yeme\] ()(25\) ‘ E;:oﬂtlmm HW
F 3st [Mnﬁ,nq [ml‘nms] [De:iﬁamnc] Unconstrained/Diverse
Flexible Inflexible
General Special

42

Example: OpenStack

Unconstrained/Diverse

g ‘ ‘ OPENSTACK

Constrained/Hidden
Standardized Contracts

HW
Fast Unconstrained/Diverse
Flexible Inflexible
General Special

43

Example: SDN

Unconstrained/Diverse

Slow
Constrained/Hidden
Standardized Contracts
HW
Fast Unconstrained/Diverse

Flexible Inflexible

General Special

44

Linux Kernel?

idgets for
y and Plasma

H p Ubuntu Android

sk Qt EFL
Display

DR19

- | I fh—[

Sys;

evdev kms ? kdbus ?

binder ashmem pmem

Linux kernel, devi:e dri.=.~ & oth:r modules e T

Linux kernel
CPU & GPU - _ IMTS/CDMA (Android-forked)

We gotta do some Systems Biology

(come on, its all just networking ©)

* Biological systems have a similar architecture

— Same tradeoff space
» with of course different implementation than our network

— Basically: diverse apps and h/w with a hidden kernel
— Constraints that deconstrain

* Many good examples of layered networks

— Very (brief) examples
* Bacteria
» Vestibular Ocular Reflex (VOR)

Layered

Bacteria
Apps
Slow
Cheap |HGT
P DNA repair 05
Mutation
DNA replication HW
Transcription
Translation
Metabolism
Fast Signal...
Costly

Flexible Inflexible

General Special

' A little more detail m"\

New e \Rna
g???.abriptio “L;Lw
RN
| Y
r 2

Other
Control

Slow
Cheap HGT

X
etab A@ Products [

ATP

Transcription
Translation
Fast Metabolism
Co Signal...

Inflexible

General Special

One More Example: The Vestibular Ocular Reflex (VOR)

Reflex eye movement that stabilizes images on the retina during head movement

S
Mechanism
Vestibular
Slow vision Ocular
Reflex
Tradeoff
Fast

Flexible Inflexible

v1S10n

\W Y,

Slow

vision

Flexible

Slow vision

Fast

Flexible Inflexible

Highly
evolved
Slow (hidden)
architecture

Fast

Flexible Inflexible

Slow

Fast

Prefronta

Apps
Ideal? rumeed
pgyv- . istrib.
>
Flexible Inflexible
General Special

BTW, can a new architecture beat the tradeoff?

3 J vision
- \\ T
Slow
Digital Reflex
Lumped
Fast Distrib.
>
Flexible Inflexible
General Special

Be careful what you wish for...

http://packetpushers.net/artificial-intelligence-brains-networks-bugs-complexity/

A Few Conclusions and Q&A if we have time

Hopefully I've Convinced You...

That there are Universal Architectural Features that
are common to biology and technology

Laws, constraints, tradeoffs
— Robust/fragile

— Efficient/wasteful

— Fast/slow

— Flexible/inflexible
Architecture/Layering
Hidden RYF Complexity

Hijacking, parasitism, predation

Ok, but why is this useful?

56

Why is all of this Useful?

* Robust systems are intrinsically hard to understand
— RYF is an inherent property of both advanced technology and biology
* Understanding general principles informs what we build
— Software (e.g., SDN, NFV, Cloud, ...) exacerbates the situation

— And the Internet has reached an unprecedented level of complexity 2
* Need new/analytic ways of designing, deploying, and operating networks if we want to scale

* Nonetheless, many of our goals for the Internet architecture revolve
around how to achieve robustness...
— which requires a deep understanding of the necessary interplay between
complexity and robustness, modularity, feedback, and fragility?
* which is neither accidental nor superficial
— Rather, architecture arises from “designs” to cope with uncertainty in
environment and components

— The same “designs” make some protocols hard to evolve
* Can anyone say, um, IPv6 (or even DNSSEC)?

1 See Marie E. Csete and John C. Doyle, “Reverse Engineering of Biological Complexity”,
http://www.cds.caltech.edu/~doyle/wiki/images/0/05/ScienceOnlinePDF.pdf

Why is all of this Useful, cont?

. This much seems obvious

— Understanding these universal architectural features and tradeoffs will help us achieve the scalability
and evolvability (operability, deployability, understandability) that we are seeking from the Internet
architecture today and going forward

* Perhaps less obvious: This requires a mathematical theory of network architecture
— Want to be able to analyze/compare/simulate/optimize all aspects of network design/operation
— Mathematics the natural language for this

— BTW, as engineers we solve problems (“engineers always know first”), but we can benefit from the
tools that theory can provide to help us design/deploy/operate/optimize our networks

* First Cut: “Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures”?!
— Network Utility Maximization (NUM)/Layering As Optimization (LAO)/Decomposition Theory

Master Problem

maximize Z Us(x;, Pes) + Z V,(W.)

subject to Rx < ¢c(w,P,),
x€C(P:), x€Cy(F) or €II(w),
ReR, FeF, weW.

— TCP and Stable Path Problem (BGP) reverse-engineered as Generalized NUM problems
— Need something like LAO/G-NUM + “Constraints that deconstrain” view

* Finally, some bridge building: Exploring the Intersection of Theory and Engineering: Universal Laws,
Architecture, and SDN: http://conferences.sigcomm.org/sigcomm/2014/tutorial-theory+eng.php

58
1 http://www.princeton.edu/~chiangm/layering.pdf

Q&A

Thanks!

