
Detecting and Quantifying Abusive IPv6
SMTP!
Casey Deccio!
Verisign Labs!
NANOG 62, Baltimore, MD!
October 6, 2014!

Verisign Public!

Spam, IPv4 Reputation and DNSBL!

•  Spam is pervasive!
•  Annoying (pharmaceuticals)!
•  Dangerous (phishing)!

•  Spam sources are diverse!
•  Botnets!
•  ISPs with no filtering!

•  Many IPv4 sources are
known and blacklisted!

•  MTAs subscribe to DNS
blacklist!

•  Reputation-based reject
saves computation,
reduces risk!

DNSBL!

SPAM!

MTA!Reject!

2!

Verisign Public!

Spam, IPv6 and You!

•  What about IPv6 reputation?!
•  Relatively little data!
•  Large address space makes

traditional blacklist infeasible!
•  Is there an user risk

associated with deploying
IPv6-capable MTAs without
reputation?!
•  Added computation!
•  Malicious content allowed to

pass!

•  How can operators quantify
risk before deploying IPv6 at
their MTAs?!

3!

Verisign Public!

Previous Work!

4!

•  Steding-Jessen (2009)!
•  http://www.cert.br/docs/palestras/certbr-ipv6-national-csirts-

meeting2009.pdf !
•  Deployed an IPv6 SMTP honeypot using an illegitimate domain

(no valid recipients)!
•  Little spam found!

•  Blazquez (RIPE) (2010)!
•  https://labs.ripe.net/Members/blazquez/content-spam-over-ipv6 !
•  IPv6 spam received for production domain was negligible!

Verisign Public!

Spam Honeypot!

Email Domain Options!
•  Active (your domain here!)!
•  Illegitimate (no legitimate
recipients – ever)!

•  Previously active (no
legitimate recipients –
currently)!

Considerations!
•  Effectiveness!

•  Volume of traffic!
•  Targeted vs. random!
•  Spam/spammer classification!

•  Security/privacy!
•  Circumvention of security filters!
•  Disclosure of legitimate emails!

•  Reliability!
•  Impact on production systems!

5!

!
Image credit: Toby Hudson 2011!
http://commons.wikimedia.org/wiki/File:Brass_scales_with_cupped_trays.png!

Verisign Public!

Relevant, Zero-Risk, Abusive IPv6 Measurement!

•  Active email domain (your domain
here!)!

•  Comparatively high traffic resulting
from:!
•  Exposure of domain and email addresses

via Web forums, compromised address
books, etc.!

•  Value of legitimate accounts to spammers!

•  Relevant value to users/operators!

6!

Verisign Public!

Do-it-Yourself  
Abusive IPv6 SMTP Measurement Instrumentation!
•  Pre-configuration:!

•  Production MTAs are IPv4 only and have only A records!
•  Production MTAs use DNSBL(s) to identify and reject IPv4 spam

attempts!

•  Configuration changes:!
1.  Log IPv4 DNSBL-based rejections at production MTAs!
2.  Deploy “sensor MTA” with both IPv4 and IPv6 and A and AAAA

records!
3.  Reject and log incoming TCP port 25 connection attempts at

sensor MTA!
4.  Add higher order MX to sensor MTA!

7!

Verisign Public!

Internet client!
(IPv4 blacklisted)!

Abusive IPv6 SMTP Measurement Instrumentation
– example.com!

8!

!
!
!
!
!
!

Sensor!
Dual stack IPv4/IPv6 connectivity!
Reject incoming TCP 25 and log!

!
!
!
!
!
!
!
!

Production MTAs!
IPv4 connectivity only!

Accept mail for example.com and log rejections!

mx1.example.com!
(MX 10)!

mx2.example.com!
(MX 20)!

sensor.example.com!
(MX 30)!

(4) SMTP Reject!

IPv4 transport!

IPv4/IPv6 transport!

(3) Establish SMTP Connection (TCP 25)!

Verisign Public!

Experimental Architecture Concepts!

•  No mail from known spammers is accepted at the MTAs –
over IPv4 or IPv6 (security)!

•  Rejection log at production MTA allows spammers to be
identified at sensor MTA (measurement)!

•  No legitimate mail is accidentally delivered to the sensor
MTA (security/stability/privacy)!

•  IPv6/IPv4 addresses can be associated for senders willing
to attempt delivery both IPv6 and IPv4 (measurement)!

•  Legitimate senders continue to send to production MTAs
first (stability)!

9!

Verisign Public!

Identifying Spammers at Sensor!

!
•  IPv4 spammers are known – due to DNSBL and rejection
log at primary MTA!

•  The challenge is identifying IPv6 spammers!

10!10!

!
!
!
!
!
!
!
!

Sensor!
Dual stack IPv4/IPv6 connectivity!
Reject incoming TCP 25 and log!

sensor.example.com!
(MX 30)!

TCP SYN (port 25) – IPv6!

TCP Reject (RST)!

TCP SYN (port 25) – IPv4!

TCP Reject (RST)!

…!

…!

Verisign Public!

IPv4/IPv6 Address Association at Sensor!

!
•  Identifying IPv6 spammers becomes a game of
association with (blacklisted) IPv4 addresses!

1.  Associate related SYNs of same connect() attempt!
2.  Associate connect() attempts from same host!

11!

Internet client!
(IPv4 blacklisted)!

11!

!
!
!
!
!
!
!
!

Sensor!
Dual stack IPv4/IPv6 connectivity!
Reject incoming TCP 25 and log!

sensor.example.com!
(MX 30)!

TCP SYN (port 25) – IPv6!

TCP Reject (RST)!

TCP SYN (port 25) – IPv4!

TCP Reject (RST)!

…!

…!

Association techniques!

Verisign Public!

Experimental Architecture Caveats!

•  No message content; spammers identified by association
with reject logs!

•  Spammers don’t necessarily follow prioritized MX ordering!
•  Spammers don’t necessarily try both IPv4 and IPv6 (i.e.,
following all addresses in getaddrinfo())!

•  Network protocols are independent; ground truth is
difficult to obtain with only server-side observation!

12!

Verisign Public!

Naïve SYN Association by connect()!

•  Group SYNs by same source IP/source port within 25-
second sliding window!

•  Result: “connect() attempt”!

13!

!
!
!
!
!

Sensor!
Dual stack IPv4/IPv6 connectivity!
Reject incoming TCP 25 and log!

sensor.example.com!
(MX 30)!

Port 1234 TCP SYN (rejected) Port 25!

…!

Client connect()!

Verisign Public!

!
!
!
!
!
!
!
!

Sensor!
Dual stack IPv4/IPv6 connectivity!
Reject incoming TCP 25 and log!

Naïve connect() Attempt Association!

!

•  Apparently embedded IPv4 host (last 32 bits – especially with
self-addressed 6to4 addresses)!

•  DNS PTR record!
•  6to4 gateway – embedded in 6to4 IPv6 address!
•  Inferred OS – using p0f for TCP fingerprinting!
•  ASN – from Team Cymru’s IP-to-ASN lookup tool!

14!

sensor.example.com!
(MX 30)!

Port 1234 TCP SYN (rejected) IPv6 Port 25!

…!

Client connect()!

Port 4567 TCP SYN (rejected) IPv4 Port 25!
Client connect()!

connect() attempt association!

…!

Verisign Public!

IPv4/IPv6 Preference and getaddrinfo()!

•  RFC 3484 (simplified)!
•  If client has global IPv6 address, and destination is global IPv6!

•  Preference ordering: IPv6, IPv4!
•  If client has only 6to4 IPv6 address (2002::/16), and destination is

global IPv6!
•  Preference ordering: IPv6, IPv4!

•  RFC 6724 updates (obsoletes RFC 3484)!
•  If client has only 6to4 IPv6 address (2002::/16), and destination is

global IPv6!
•  Preference ordering: IPv4, IPv6!

•  getaddrinfo() behavior!
•  Windows 7 – conforms to RFC 6724!
•  Linux (3.2) – conforms to RFC 6724!
•  Mac OS X (10.9) – conforms to RFC 6724!

15!

Verisign Public!

Experimental Architecture – Prototype Results!

•  Production email domain with ~10K users!
•  Traffic captured Jan – Nov, 2013!
•  For non-6to4 addresses, IPv6 connect() attempts
associated with subsequent IPv4!

•  For 6to4 addresses, IPv6 connect() attempts
associated with previous matching IPv4!

•  OS identification by p0f!

16!

Verisign Public!

connect() Attempts From Spammers Over Time!

17!

Fig. 7. Number of connect attempts to the SMTA over time.

association with an IPv4 spammer, but we include unassociated IPv6 hosts in
our study both because we cannot confirm their reputation by association and
because they are inherently anomalous due to their rogue status.

We observed activity from different types of addresses, OSes, links, and au-
tonomous systems (ASes), which we summarize in this section.

8.1 IPv6 Spam Activity

Figure 7 plots the number of weekly connect attempts at the SMTA over time,
from both unassociated IPv6 addresses and those associated with IPv4 spam-
mers. It also includes the volume of connect attempts from IPv4 spammers
over the same time period. There was some variance in activity from week to
week, with an average of 2908 IPv6 connect cumulative attempts per week.
The volume associated with IPv4 attempts was consistently about two orders of
magnitude more than the IPv6 traffic.

The ratio of connect attempts from associated to those from unassociated
IPv6 addresses was consistent throughout the distance, with the exception of
several stints of relatively high activity from unassociated IPv4 addresses, most
prominent in January and October, 2013. This activity was in part attributed
behavior of the sendmail MTA [7], and we address it in more detail in Section 8.6.

Figure 8 plots the distribution of the number of connect attempts per IPv6
address over time, including IPv6 addresses associated with known IPv4 spam-

IPv4 spam activity is consistently
two orders of magnitude higher than
IPv6 spam activity!

Verisign Public!

IPv6 Spammer OSes !

IPv6 Hosts! IPv6 Attempts!
Associated! Unassociated! Associated! Unassociated!

Windows! 293 (11%)! 105 (4.0%)! 18492 (14%)! 2652 (2.0%)!
Linux! 1900 (72%)! 317 (12%)! 96976 (75%)! 11842 (9.1%)!
Other! 7 (0.27%)! 3 (0.11%)! 64 (0.05%)! 9 (0.00%)!

18!

11%!

73%!

4%! 12%!
Windows
(associated)!
Linux/other
(associated)!
Windows
(unassociated)!
Linux/other
(unassociated)!

14%!

75%!

2%!
9%! Windows

(associated)!
Linux/other
(associated)!
Windows
(unassociated)!
Linux/other
(unassociated)!

Verisign Public!

IPv6 Address Types of Spammers!

IPv6 Hosts! IPv6 Attempts!
Associated! Unassociated! Associated! Unassociated!

6to4! 252 (7.5%)! 63 (1.9%)! 16750 (13%)! 1408 (1.0%)!
Other! 2536 (76%)! 494 (15%)! 101169 (76%)! 14135 (11%)!

EUI-64! 533 (16%)! 142 (4.2%)! 35888 (27%)! 7241 (5.4%)!
Embedded IPv4! 621 (19%)! 108 (3.2%)! 36074 (27%)! 2387 (1.2%)!
Other! 1634 (49%)! 307 (9.2%)! 45967 (34%)! 5915 (4.4%)!

19!

Verisign Public!

OS-specific connect() Behavior!

•  Different default behaviors across OSs in response to
TCP RST!
•  Windows XP/7– sends three SYNs – same source port!
•  Linux (3.2) – sends single SYN!
•  Mac OS X (10.9) – sends single SYN!

20!

Verisign Public!

Number of SYNs for Each Inferred connect()
Attempt!

21!

as a connect attempt, referring to the socket call by the same name to produce
that behavior.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 4 8 16 32 64 128 256 512

CD
F

Number of SYNs

Windows
Linux
other

Fig. 2. Distribution of the number of SYNs per connect attempt. Whereas Linux does
not retry after a TCP RST, Windows does.

Figure 2 shows the distribution of SYN packets per connect attempt observed
in our experiment as a function of inferred OS. For over 99.5% of the connect
attempts observed, the maximum number of SYNs per connect was three or
fewer.

We observe that, despite the aforementioned known behavior of connect
within the Windows operating system, over 20% of the connect attempts from
Windows hosts resulted in only a single SYN. In seeking to understand the cause
of this discrepancy, we hypothesized that the single SYN was symptomatic of
hosts behind port-based network address translation (NAT). In the case of a
Windows host attempting to connect to the SMTA from behind a port-based
NAT, we would expect to see three SYNs from seemingly random ports.

We tested this hypothesis by analyzing the Windows connect attempts that
appeared to only be issuing a single SYN. Of these, only 31% could not be grouped
with any other SYNs from the same source IPv4 address (but different source
ports) within the same 20 second grouping window. About 53% were grouped
with exactly two other SYNs, displaying the expected behavior of Windows hosts
behind port NAT. Another 9% could be grouped with more than two other SYNs.
About 7% could be grouped with exactly one other SYN, which is proportional to
the number of two-SYN connect attempts by Windows hosts’ attempts having
the same source port (see Figure 2). The entire distribution is shown in Figure 3.

•  75% of attempts from Windows consisted of
3 SYNs (expected behavior)!

•  What about the other 25%?!

Verisign Public!

Windows behind NAT?!

22!

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128

CD
F

Number of SYNs

Fig. 3. Distribution of the number of SYNs per group associated with Windows hosts
otherwise having only a single SYN; implying that at least 53% of these hosts are likely
behind port-based NAT.

7.2 Application-Level Connection Attempts

An application, such as an MTA, relies on the socket API, including the connect
call. Additionally, it relies on other functions, such as getaddrinfo or the older,
less preferred, gethostbyname. The former provides a prioritized ordering of
IPv4 and IPv6 addresses for a given hostname, and the latter includes only a
single IPv4 address.

The order of the addresses returned with getaddrinfo is nuanced and in-
cludes considerations such as available IP versions advertised by the remote
server (i.e., through A and AAAA records for the server’s hostname in the DNS)
and available IP version connectivity at the sending MTA (i.e. client). The sim-
plified summary of the address selection specifications [5, 21], for the purposes
of our experiment, is that if global IPv6 is available on both the client and
the server, then the client attempts IPv6 connectivity before IPv4. However,
RFC 6724 updates the behavior of clients having only 6to4 IPv6 connectivity [3,
8], such that IPv4 is preferred to IPv6.

For example, consider the SMTA sensor.example.com, with both A and
AAAA records, the latter being a global IPv6 address. The getaddrinfo call for
sensor.example.com on a dual-stack system with a global IPv6 address would
yield an ordered list of two destinations: 2001:db8::3 and 192.0.2.3. The same
call from a host with only 6to4 connectivity would again yield 2001:db8::3
and 192.0.2.3 if it were adhering to the older address selection guidance,
in RFC 3484 [5]. However, if if it were adhering to the newer guidance in
RFC 6724 [21], then the list would be: 192.0.2.3, then 2001:db8::3.

•  Some NAT implementations exhibit
behavior in which effective source ports
are not the same across consecutive
SYNs from the same port!

•  Windows connect() attempts with
one SYN (23%) were re-evaluated
without regard for source port!

•  Over half of these were grouped into
SYN attempts of exactly three within
close proximity!

Windows
behind
NAT
possibility!

Verisign Public!

OS-specific IPv4/IPv6 TCP Source Port Allocation!

•  For close proximity
requests, ephemeral TCP
source ports are often
allocated sequentially!
•  Windows XP/7 – IPv4/IPv6

share the same ephemeral
port pool!

•  Linux (3.2) – IPv4/IPv6 use
distinct ephemeral port pools!

•  Mac OS X (10.9) – IPv4/IPv6
use distinct ephemeral port
pools!

•  Example – Windows XP/7!

•  Example – Linux!

23!

Sequential
connect()!

Source port!

1. ::1! 50673!
2. 127.0.0.1! 50674!
3. ::1! 50675!
4. 127.0.0.1! 50676!

Sequential
connect()!

Source port!

1. ::1! 54382!
2. 127.0.0.1! 60164!
3. ::1! 54383!
4. 127.0.0.1! 60165!

Verisign Public!

TCP Source Port Proximity Between IPv4/IPv6
Attempts!

associations. In 8% of the IPv6 associations made, the IPv4 address was embed-
ded in the lower bits of the IPv6 address. In all but 1% of the matches, the IPv4
and IPv6 ASNs were the same, although we note that ASN match is one of the
selection criteria. In only 9% of the associations did both addresses have a PTR
record, and the PTR records were identical.

There are several possible factors contributing to the 20% of observed IPv6
addresses with no IPv4 association. First, many Internet Service Providers (ISPs)
block TCP port 25 because of the potential for abuse. However, a TCP port 25
block over IPv4 does not necessarily imply a block over IPv6 or protocol 41,
which is the protocol used by the 6in4 and 6to4 (which uses 6in4) transition
technologies. We have also identified two MTA implementations whose behaviors
might lead to activity in which the connect attempts for IPv4 and IPv6 are
either in non-compliant order (i.e., IPv4 before IPv6) or the IPv4 attempt is
missed completely. This behavior is described in Section 8.6.

Figure 4 contains a plot of the CDF representing the difference in source port
numbers between close proximity IPv6 and IPv4 connect attempts, both those
identified as originating from a Windows, Linux, or other OS. A positive value

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-30000 -20000 -10000 0 10000 20000 30000

CD
F

Di erence in TCP Source Port Value

Windows
Linux
Other

Fig. 4. Distribution of the difference in port between IPv4 and IPv6 connect attempts.
Windows hosts exhibit small differences between source ports allocated, whereas the
difference for other hosts is uniformly distributed across the range of differences.

on the x axis indicates that the later connect attempt came from a source port
greater than that of the earlier connect attempt.

About 97% of the source port difference for connect attempts coming from
Windows OSes are between 1 and 500. This indicates a very strong correlation
between the observed Windows TCP port assignment behavior, p0f fingerprint-

24!

•  Difference between 97% of
Windows IPv4/IPv6 attempts
is between 1 and 500!

•  Difference between 15% of
“other” IPv4/IPv6 attempts
between 1 and 20!

•  All but one are
“unidentified”!

•  Follow Windows
behavior!

p0f–identified
Windows hosts!

inferred
Windows
hosts!

Verisign Public!

Misbehaving MTAs!

25!

•  MTAs from Microsoft ASNs attempted over one million
collective connect() attempts over one month (roughly
one connect() every five seconds from each /64)!

•  Few corresponding IPv4 attempts during that time!
•  Apparently not associated with real attempts!

Subnet! Number of addresses! Attempts!
2a01:111:f400:fe00::/64! 4! 538481!
2a01:111:f400:fe04::/64! 4! 538174!

Verisign Public!

Misbehaving MTAs – sendmail!

•  An instance of sendmail (v 8.13.8, distributed) issued
requests from the same address and source port in
succession over several weeks!

•  Few corresponding IPv4 attempts during that time!
•  Unable to reproduce this in an isolated lab environment!
•  Single connect() attempt or source port re-use?!
•  What caused this behavior?!
!

26!

Verisign Public!

Summary and Future Work!

•  Summary!
•  Reputation of IPv6 Internet is largely

unknown!
•  Architecture for measuring abusive

IPv6 SMTP on a production email
domain has been presented!

•  Moderate presence of spammers of
various sources, though spam content
can’t be confirmed!

•  Future work!
•  Further analyze existing data!
•  Compare data with that of unused

email domain!
•  Create network of SMTP sensors, all

contributing data (collaboration
requested!)!

27!

SMTP!
sensor!

SMTP!
sensor!

SMTP!
sensor!

Aggregator!

Feed!

© 2014 VeriSign, Inc. All rights reserved. VERISIGN and other trademarks, service marks, and designs are registered or unregistered trademarks of
VeriSign, Inc. and its subsidiaries in the United States and in foreign countries. All other trademarks are property of their respective owners.!

