

SPAMTRACER TRACKING FLY-BY SPAMMERS

NANOG60

PIERRE-ANTOINE VERVIER

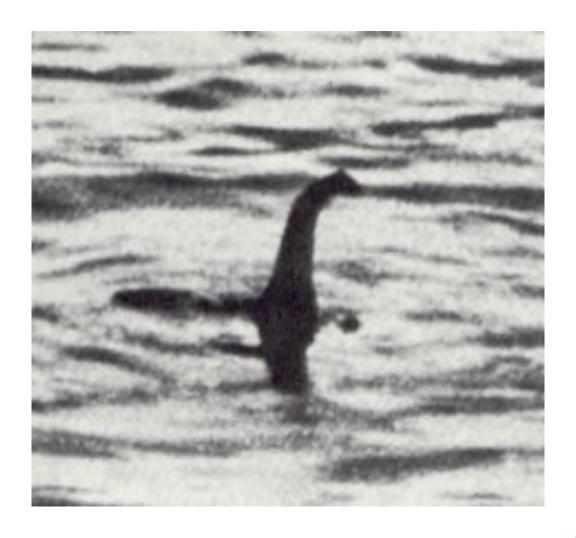
SYMANTEC RESEARCH LABS

Pierre-Antoine_Vervier@symantec.com

BGP hijacking

- CAUSES
 - The injection of erroneous routing information into BGP
 - No widely deployed security mechanism yet
 - E.g., ROA, BGPsec
- EFFECTS
 - Blackhole or MITM [Pilosof:Defcon'08] of the victim network
- EXPLANATIONS
 - Router misconfiguration, operational fault
 - E.g., Hijack of part of Youtube network by Pakistan Telecom
 - Malicious intent?

Where it all begins


CONJECTURE

- Spammers would use BGP hijacking to send spam from the stolen IP space and remain stealthy
- Short-lived (< 1 day) routes to unannounced IP space + spam [Ramachandran:SIGCOMM'06] but...
- ...this does not necessarily imply hijacks [Vervier:ICC'14]
- Anecdotal reports on mailing lists

POTENTIAL EFFECTS

- Misattribute attacks launched from hijacked networks due to hijackers stealing IP identity
- Spam filters heavily rely on IP reputation as a first layer of defense

Fly-by spammers :: Myth or reality?

Your mission, should you accept it

 Validate or invalidate on a large scale the conjecture about fly-by spammers

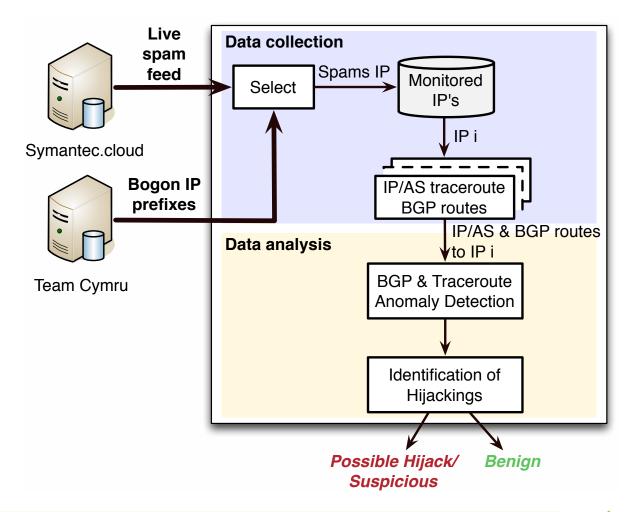
Assess the prevalence of this phenomenon

- collect routing information about spam networks
- extract abnormal routing behaviors to detect possible
 BGP hijacks

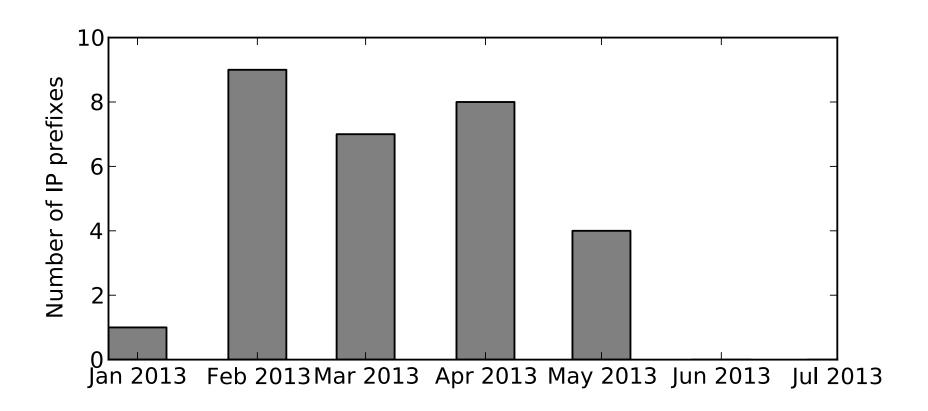
Scam

spam

SPAMTRACER:: Presentation

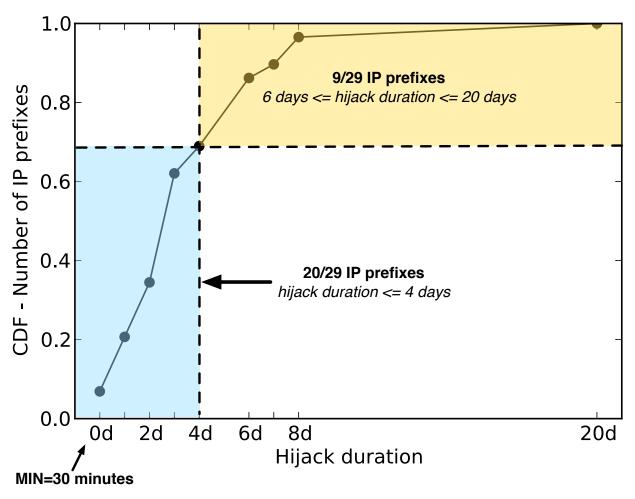

ASSUMPTION

 When an IP address block is hijacked for stealthy spamming, a routing change will be observed when the block is released by the spammer to remain stealthy


METHOD

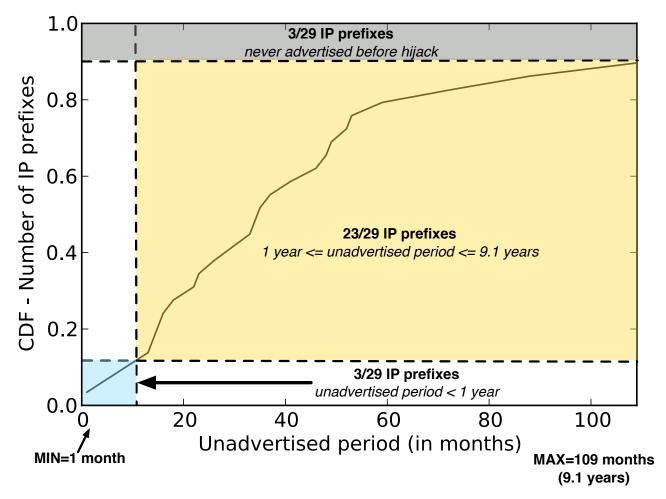
- Collect BGP routes and IP/AS traceroutes to spamming networks just after spam is received and during several days
- Look for a routing change from the hijacked state to the normal state of the network

SPAMTRACER:: System architecture

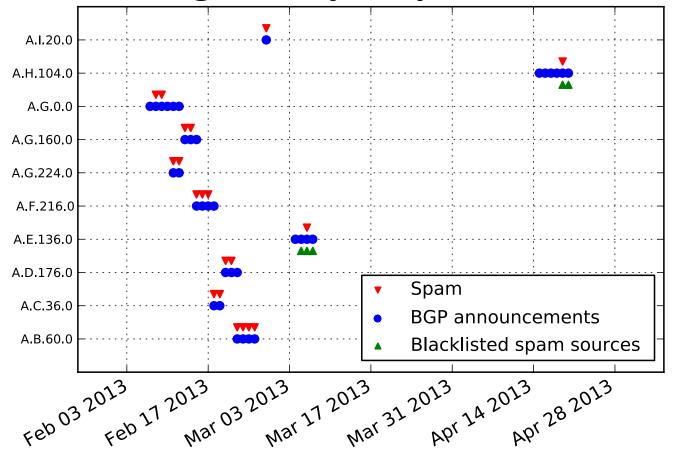

29 hijacked IP prefixes from Jan. to Jul. 2013

Fly-by spammers :: Hijack signature

- Hijacked networks
 - were dormant IP address blocks, i.e., by the time the networks were hijacked they had been left unadvertised by their owner
 - advertised for a rather short period of time
 - advertised from an apparently legitimate origin AS but via a presumably illegitimate upstream AS
 - see [Huston:RIPE50]
- In practice, we observed
 - hijack durations between 30 minutes and 20 days
 - unadvertised periods between 1 month and 9 years
 - illegitimate upstream ASes were hijacked too


Hijack duration

Most hijacks were rather short-lived!


Durations of unadvertised period of IP prefixes

Most hijacked IP prefixes were left unadvertised for a very long time!

Case studies :: IP prefix routing history & Spam & DNSBLs

- IP prefixes have only been announced when spam was received!
- Few IP prefixes have spam sources blacklisted in Spamhaus SBL and DROP, Uceprotect or Manitu at the time of the BGP announcements!

Case studies :: IP prefix routing history & Spam & DNSBLs

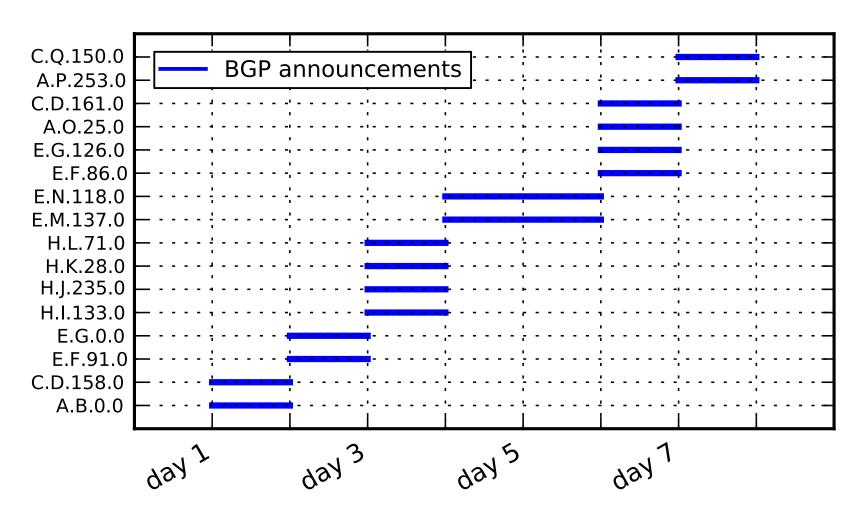
- Strong temporal correlation between
 - BGP announcements of IP prefixes and
 - spam
- BGP announcements are quite short-lived!
- No identified spam bot!
- Scam web sites advertised in spam mails hosted in the hijacked networks

How effective is this spamming technique?

- Out of 29 hijacked IP address blocks
 - 6 (21%) were listed in Uceprotect or Manitu
 - 13 (45%) were listed in Spamhaus SBL and DROP (Don't Route Or Peer)
 - DROP is supposed to list hijacked IP address blocks
 - but little is known about their listing policy
 - 29 (100%) were observed only once during the time period of the experiment
- Fly-by spammers seem to manage to remain under the radar!

Which networks were targeted?

- All hijacked IP address blocks were assigned to a different organization (i.e., a different owner)
- Out of 29 organizations
 - 12 (41%) were found to be dissolved or very likely out of business
 - 17 (59%) were found to be still in business or no conclusive evidence of them being out of business could be found
- Fly-by spammers seem to simply target dormant IP address blocks regardless of their owner still being in business or not!


One timeline to bind them

Several hijacks were performed in groups of 2
to 4, all hijacks in a group starting and ending
at the same time

 During several days there were always at least two IP prefixes hijacked

 This temporal pattern suggests a common root cause to those hijacks!

One timeline to bind them

What about long-lived hijacks?

- We looked specifically for short-lived hijacks
 - each spam network was monitored for 1 week after spam was received
- But what about long-lived ones
 - it happens also, e.g., LinkTelecom hijack lasted 5 months
 [NanogML'11, Symantec:ISTR'12, Schlamp:CCR'13]
 - but they are less straightforward to detect
 - and it seems to defeat the assumed purpose of evading blacklisting
- We are working on updating our framework to better detect these cases

How to prevent fly-by spammers?

- In the observed hijack cases, spammers
 - did not tamper with the origin of the IP address blocks
 - but advertised the IP address blocks via illegitimate upstream ASes
- The RPKI is currently the most promising architecture for securing BGP
 - both Route Origination and Route Propagation must be secured to prevent fly-by spammers
 - secured Route Origination via ROAs is being more and more deployed
 - but secured Route Propagation with BGPsec is still at a too early stage
- The solution for now is thus to
 - return and help RIRs reclaim dormant IP space, and
 - use detection systems to mitigate the effects of these attacks, e.g., by feeding IP-based reputation systems with hijacked IP address blocks

Conclusion

- The observed fly-by spammer cases show that this phenomenon is happening though it does not currently seem to be a very prevalent technique to send spam, e.g., compared to botnets
- However, it is important to detect those attacks because hijacking IP address blocks hinder traceability of attackers and can lead to misattributing attacks when responding with possibly legal actions!

Perspectives

- Provide an interface for network operators to query identified hijacks
- Collaborate with RIRs and ISPs to help mitigate hijacks
- Ongoing collaboration with Institut Eurécom (FRA) and TU München (GER) to build a comprehensive system for the detection and investigation of malicious BGP hijacks

Thank you!

Time for Q&A!

Some references

[Ramachandran:SIGCOMM'06] A. Ramachandran and N. Feamster. *Understanding the network-level behavior of spammers*. In SIGCOMM, pages 291-302, 2006.

[Pilosov:Defcon'08] A. Pilosov and T. Kapela. *Stealing the Internet: An Internet-Scale Man In The Middle Attack.* Defcon 16, Las Vegas, NV, August 2008.

[Huston:RIPE50] G. Huston. Auto-Detecting Hijacked Prefixes? RIPE 50, May 2005.

[NanogML'11] Prefix hijacking by Michael Lindsay via Internap, http://mailman.nanog.org/pipermail/nanog/2011-August/039381.html, August 2011.

[Symantec:ISTR'12] Symantec Internet Security Threat Report: Future Spam Trends: BGP Hijacking. Case Study - Beware of "Fly-by Spammers". http://www.symantec.com/threatreport/, April 2012.

[Vervier:TMA'13] P.-A. Vervier and O. Thonnard. *Spamtracer: How Stealthy Are Spammers?* In IEEE International TMA Workshop, pages 453-458, 2013.

[Schlamp:CCR'13] J. Schlamp, G. Carle, and E. W. Biersack. A Forensic Case Study on AS Hijacking: The Attacker's Perspective. ACM CCR, pages 5-12, 2013.

[Vervier:ICC'14] P.-A. Vervier, Q. Jacquemart, J. Schlamp, O. Thonnard, G. Carle, G. Urvoy-Keller, E. Biersack and M. Dacier. *Malicious BGP Hijacks: Appearences Can Be Deceiving*. To appear in IEEE ICC, 2014.

Spamhaus DNSBLs, http://www.spamhaus.org/ Uceprotect DNSBL, http://www.uceprotect.net/ Manitu DNSBL, http://www.dnsbl.manitu.net/