

12 Mbps @ 36000 ft.

Coming attractions in in-flight broadband

12 Mbps at home or in the air

Exede in the Air 12 Mbps to each Passenger

~ Measured page loads 8x > current services

ViaSat Overview

» ViaSat is a broadband service provider

Shannon's Theorem More spectrum = Capacity

 $C = B \log_2(1 + S/N)$

- » Air-to-ground terrestrial systems operating around 800 MHz have significantly smaller spectrum (few MHz)
- » Much more spectrum available at Ka-band (100's MHz)

Frequency reuse drives up capacity

Ku and Ka Satellites

Terrestrial Cellular

Greater Capacity (Gbps)

ViaSat's JetBlue/United Program

- » Program for large U.S. fleets
 - > A320, 737 & 757
 - > EMB-190
 - > Total ~ 400 aircraft
- » ViaSat providing all airtime services

Anna Stan Stan Stan

A320

EMB-190

737NG

Network Elements

Two way communications from the middle of the sky, the middle of the ocean, or the middle of the desert

Satellite Comm Equipment

- The Aircraft Unit is based on ViaSat's SurfBeam[®] 2 technology and infrastructure deployed on several high capacity satellites currently in service (ViaSat's own Wild Blue-1, Anik-F2 and ViaSat-1 in North America and Eutelsat's Ka-Sat in Europe).
- » It consists of three Line Replaceable Unit (LRU)'s :
 - Aircraft Modem Unit (AMU)
 - Power Supply Unit (PSU)
 - > Airborne Antenna Unit (AAU)
- » Radome
 - The radome provides environmental protection as well as minimizing aerodynamic loads and providing bird strike and lightning protection.
 - > The radome must be designed to allow RF signals to pass through at Ka-band with minimal impact on the RF performance of the antenna system. The AAU resides in the Radome

Satellite Modem Termination System (SMTS) aka Base Station

- » Component at Satellite Gateways responsible for managing the Air Interface with MTs
 - > Physical Layer
 - Modulation / Demodulation of satellite Forward and Return channels, FEC encoding/decoding
 - > PHY layer algorithms (timing control, power control, fade mitigation)
 - Media Access Control (MAC) Layer
 - MT network entry / registration / exit, bandwidth request and grant protocols
- » Performs Radio Resource Management (RRM) for satellite network
 - Schedules and allocates satellite bandwidth to MT Service Flows to ensure Quality of Service (QoS) objectives are met
 - Congestion control and Load Balancing with Satellite Beam
- » Manages air interface portion of MT Handover protocols

SurfBeam 2 Mobility Overview

- » SurfBeam 2 initial deployment uses mobility protocols to handoff users from one carrier to another within a Beam – similar to hand-offs across sectors.
- Mobility enhancement extends this capability to enable seamless Beam-to-Beam and Satellite-to-Satellite handoffs

Masa

SurfBeam 2 Mobility Architecture

- » Beam-to-Beam Handover (HO) based upon established WIMAX mobility protocols
 - Utilize HO protocols defined over R4, R6, R8over-R6 interfaces
- Mobility protocols convey <u>MT Context</u> information between Serving and Target Beam controllers prior to Handover
 - Ensures Handover is rapid and largely 'seamless'
- » ASN supporting the beam in which the flight originates serves as anchor for that mobile throughout course of flight
 - All traffic to/from this mobile always traverses this gateway

ViaSat Ka-band Handoffs

- » Key points
 - > All user services persist through hand-off process
 - > Web pages continue to load
 - Video streams continue
 - > Email & VPN services continue
- » Why it works
 - All beams tied together via ground network to form a single integrated network
 - There is a ~ 3 sec modem retuning process that occurs during hand-off
 - Results in brief, infrequent incremental packet delay that is not distinguishable from typical variations in the internet

ViaSat Ka Network over North America

Multi-beam architecture is key to enabling huge capacity increase and large economic benefit

SurfBeam 2 Network Infrastructure

- » Network consists of satellite RANs and a Packet Core
 - > Internet Point of Presence (PoP) at Core Node
 - > "Core" Nodes part of a Packet Core
 - Connection of Core Node to associated Gateways
- » Routing Infrastructure
 - > OSPF for IGP
- » CG-NAT for passengers
- » Content filtering rules applied by service provider

Packet Core Node redundancy

Failover done through managing routes with different cost metrics

Getting over TCP performance on a Long Fat Network

- » TCP slow start and congestion avoidance does not work well high bandwidth-delay product networks
- » Split-connection TCP proxy
 - Eliminates TCP connection setup round trips for HTTP & HTTPS
 - > Eliminates TCP slow start
 - Fills bandwidth "pipe" by overcoming TCP receive window limitations

Summary

- » High capacity satellite enables residential experience in the air
- » Spectrum reuse allows for higher capacity
- » Airline mobile network is similar to the terrestrial mobile
- » Higher delay compensated with protocol proxies

Any Questions?

