
QUIC
Next generation multiplexed transport over UDP

How do you make the web faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

Us
er

-p
er

ce
iv

ed
 la

te
nc

y

How do you make the web faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

Google CDN

Us
er

-p
er

ce
iv

ed
 la

te
nc

y

Build a
carrier-grade

network google.com

How do you make the web faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

Chrome

HTTP/2

google.com

Google CDN

Us
er

-p
er

ce
iv

ed
 la

te
nc

y

Launch your
own browser

Update HTTP

Build a
carrier-grade

network google.com

How do you make the web faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

Chrome

HTTP/2

???

google.com

Google CDN

Us
er

-p
er

ce
iv

ed
 la

te
nc

y

Launch your
own browser

Update HTTP

Build a
carrier-grade

network

Update
transport

google.com

What is QUIC?

● A reliable, multiplexed transport over UDP
● Always encrypted
● Reduces latency
● Runs in user-space
● Open sourced in Chromium

QUIC
Quick UDP Internet Connections

Where does it fit?

TLS 1.2

HTTP/2

TCP

IP

QUIC

UDP

HTTP/2 API

QUIC Works Great™ when...

You treat UDP like TCP:
● UDP port 443 open
● No UDP rate-limits
● No worse UDP QoS treatment
● Reasonable stateful FW/NAT timeouts
● 5-tuple traffic load balancing

QUIC builds on decades of experience with TCP

Incorporates TCP best practices
 TCP Cubic - fair with TCP
 FACK, TLP, F-RTO, Early Retransmit...

Adds signaling improvements that can’t be done to TCP
 Loss detection - retransmission uses a new sequence number

More flexibility going forward
 Improved congestion feedback, control over acking

Congestion control & reliability

TCP TCP + TLS QUIC
(equivalent to TCP + TLS)

Zero-RTT connection establishment

Comparable to TLS
 Perfect forward secrecy, with more efficient handshake

IP spoofing protection
 Signed proof of address

Inspired TLS 1.3’s zero RTT handshake
 Plan to adopt TLS 1.3 when complete

Always encrypted

Effective
How quick is QUIC?

Controlled Experiments

Client Side
 Latency, Bandwidth, Quality of Experience, Errors

Server Side
 Latency, Bandwidth, QUIC Success Rate

Fine Grained Analysis
 By ASN, Server, OS, Version

Transparency
 ISP view on peering.google.com

Measuring performance

Performance on Google properties

Faster page loading times
● 5% faster on average
● 1 second faster for web search at 99th-percentile

Improved YouTube Quality of Experience
● 30% fewer rebuffers (video pauses)

More improvements to come
● Bandwidth resumption, forward error correction, etc

Recent Blog Post

http://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html
http://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html

Where are the gains from?

Zero-RTT
● Over 50% of the latency improvement (at median and 95th-percentile)

Improved loss recovery
● Over 10x fewer timeout based retransmissions improve tail latency and

YouTube video rebuffer rates

Other, smaller benefits
● e.g. head of line blocking, more efficient framing

Deployment timeline
Tested at scale, with millions of users
● Chrome Canary: June, 2013
● Chrome Stable: April, 2014
● Ramping up for Google traffic: January, 2015

Safe
What we’re doing to protect users and networks

Client-side protection

What if UDP is blocked?
● Chrome seamlessly falls back to HTTP/TCP

What if the path MTU is too small?
● QUIC handshake fails, Chrome falls back to TCP

What if a client doesn’t want to use QUIC?
● Chrome flag / administrative policy to disable QUIC

When client-side protection is not enough...

As a last resort, Google disables QUIC to specific ASNs
● This is used as a fallback to protocol features

Why do we disable QUIC delivery?
● Degraded quality of experience measured
● Indications of UDP rate limiting at peak times of day
● End user reports (via chromium.org)

QUIC on your network

Get access at peering.google.com/quicfaq

http://peering.google.com/quicfaq

Debugging Tools: Chrome

chrome://net-internals
● Active QUIC sessions
● Captures all events
● Important for filing

Chromium bugs

https://code.google.com/p/chromium/issues/list

Debugging Tools: Wireshark

Parses
● Protocol: QUIC
● CID: Connection ID
● Seq: Sequence number
● Version: ie: Q024
● Public flags: 1 byte
● Payload: Encrypted

What’s Next?

Future Improvements

● Forward Error Correction
● Connection Mobility
● Multipath
● Congestion Control

Open source implementations

Servers
● Open source test server included in Chromium
● Working to support QUIC in Apache Traffic Server

Clients
● Open source Chromium client library for desktop and mobile
● Google Chrome and some Google Android apps
● Working with other browsers.

QUIC at the IETF

Nov 2013 Initially Presented
Mar 2015 QUIC Crypto
July 2015 Updated presentation
Ongoing Including Zero-RTT handshake in TLS 1.3

Review: QUIC Summary

● Reliable, multiplexed transport
● Runs over UDP
● Always encrypted
● Lower latency connection establishment
● Optional FEC
● Rapidly evolving user-space implementation
● Open source

Review: Providing Safe Passage

Treat UDP like TCP:
● UDP port 443 open
● No UDP rate-limits
● No differential UDP QoS
● Reasonable stateful FW/NAT timeouts
● Sensible hash-based traffic distribution

ISP Resources for QUIC: peering.google.com/quicfaq

Ian Swett
ianswett@google.com

QUIC

http://peering.google.com/quicfaq
mailto:ianswett@google.com
mailto:ianswett@google.com

