

IPv6 — An introduction

Owen DeLong owend@he.net

LoL Kitteh sez:

IPv6 Transition -- How ready are we?

- Things that are ready
 - Backbones
 - CMTS Systems (DOCSIS 3)
 - **MacOS** (10.4+)
 - Linux (2.6 Kernels)
 - Windows (7, 2008, XP (limited))

- WiMax (specification, head end equipment)
- **I**LTE (some)
- **CPE** (very limited)
- Early Adopters and some industry experts
- Hurricane Electric
- **Me**

IPv6 Transition -- How ready are we?

- Things that are NOT ready
 - PON Systems
 - DSL Systems
 - CMTS Systems (DOCSIS 2)
 - WDS/EVDO/HSPA
 - WIMAX (handsets, providers)

- Older Windows (XP and earlier)
- Embedded systems
- Printers
- Home entertainment devices
- CPE (most)
- Most IT staff and management

An Important Decision Which Approach will you take?

IPv4/IPv6 Dual Stack Now

My dual stack network is running great!

IPv4 is just fine.
We just need MOAR NAT!!

What we'll cover

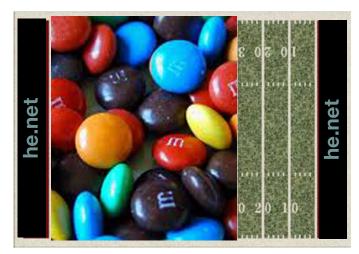
- Basics of IPv6
- IPv6 Addressing Methods
 - SLAAC
 - DHCP
 - Static
 - Privacy
- Linux Configuration for Native Dual Stack
- IPv6 without a native backbone available
- Free IPv6?

Some additional topics

- Routing
- Firewalls
- DNS
- Reverse DNS
- Troubleshooting
- Staff Training

Basics: IPv4 vs. IPv6

Property	IPv4 Address	IPv6 Address
Bits	32	128
Total address space	3,758,096,384 unicast 268,435,456 multicast 268,435,456 Experimental/other (Class E, F, G)	42+ Undecilion assignable 297+ Undeciliion IANA reserved
Most prevalent network size	/24 (254 usable hosts)	/64 (18,446,744,073,709,551,616 host addresses)
Notation	Dotted Decimal Octets (192.0.2.239)	Hexidecimal Quads (2001:db8:1234:9fef::1)
Shortening	Suppress leading zeroes per octet	Suppress leading zeroes per quad, longest group of zeroes replaced with ::


¹42,535,295,865,117,307,932,921,825,928,971,026,432 assignable unicast (1/8th of total)

²297,747,071,055,821,155,530,452,781,502,797,185,024 IANA reserved (7/8th of total)

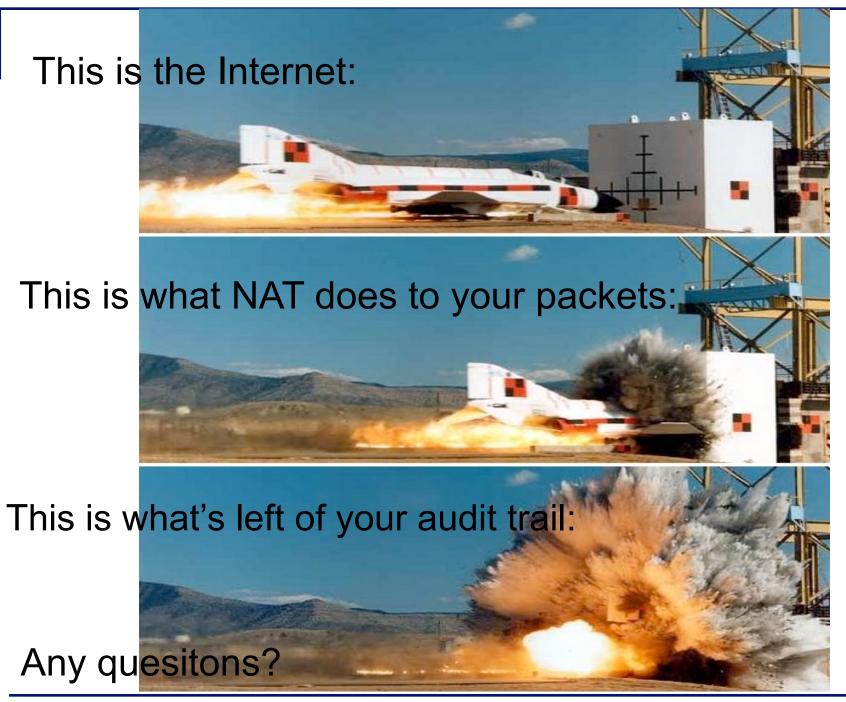
Network Size and Number of networks (The tasty version)

Almond Carles Balletine Control of the State of the State

One IPv4 /24 -- 254 M&Ms

Full Address Space, One M&M per /24 covers 70% of a football field

One IPv6 /64 -- Enough M&Ms to fill all 5 of the great lakes.



Full Address Space, One M&M per /64 fills all 5 great lakes.

Comparison based on Almond M&Ms, not plain. Caution! Do not attempt to eat a /64 worth of any style of M&Ms.

Basics: IPv4 vs. IPv6 thinking

Thought	IPv4 dogma	IPv6 dogma
Assignment Unit	Address (/32)	Network (/64)
Address Optimization	Tradeoff Aggregation, Scarcity	Aggregation (At least for this first 1/8th of the address space)
Address Issue Methodology	Sequential, Slow Start, frequent fragmentation	Bisection (minimize fragmentation), issue large, minimal requests for more, aggregate expansions.
NAT	Necessary for address conservation	Not supported, Not needed Breaks more than it solves (other than possible NAT64)
Address Configuration	Static, DHCP	Stateless Autoconf, Static, some DHCP (needs work), DHCP-PD (NEW!!)

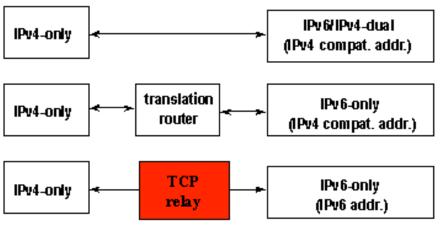
Basics Address Scopes

- Link Local -- fe80::<UUVV:WW>ff:fe<XX:YYZZ>
 only valid on directly attached subnet.
- Site Local (deprecated) -- Only valid within site, use ULA or global as substitute.
- Unique Local Addresses (ULA) -- Essentially replaces IPv4 RFC-1918, but, more theoretical uniqueness.
- Global -- Pretty much any other address, currently issued from 2000::/3, globally unique and valid in global routing tables.

Basics: Stateless Autoconfiguration

- Easiest configuration
- No host configuration required
- Provides only Prefix and Router information, limited ability to provide services addresses (DNS, NTP, etc.) (on some implementations)
- Assumes that all advertising routers are created equal, rogue RA can be pretty transparent to user (RA guard required on switches to avoid)

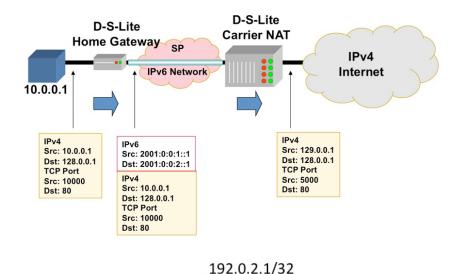
Stateless Autoconfiguration Process

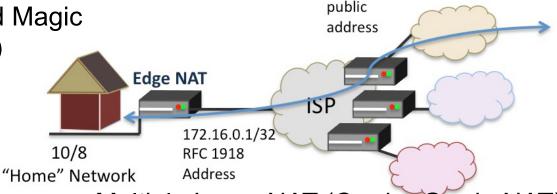

- Host uses MAC address to produce Link Local Address. If MAC is EUI-48, convert to EUI-64 per IEEE process: invert 0x02 bit of first octet, insert 0xFFFE between first 24 bits and last 24 bits fe80::<EUI-64>
- IPv6 shutdown on interface if duplicate detected.
- ICMP6 Router Solicitation sent to All Routers Multicast Group

Stateless Autoconfigration Process (cont.)

- Routers send ICMP6 Router Advertisement to link local unicast in response. Also sent to All Hosts Multicast group at regular intervals.
- Router Advertisement includes Prefix(es), Preference,
 Desired Lifetime, Valid Lifetime.
- Host resets applicable Lifetime counters each time valid RA received.
- Address no longer used for new connections after Desired lifetime expires.
- Address removed from interface at end of Valid lifetime.
- Prefix(es)+EUI-64 = Host EUI-64 Global Address, netmask always /64 for SLAAC.

If you think IPv6 is hard, wait until you try any of these.


Communication between IPv4 nodes and IPv6 nodes



As yet undefined/unimplemented Magic

(TCP relay could be SSH tunnel)

Dual Stack Lite (ISC)

Multiple Layer NAT (Carrier Grade NAT)

DHCPv6

- Can assign prefixes other than /64 --Theoretically to routers which then delegate various networks automatically downstream, a few limited implementations of this feature.
- Can assign addresses to hosts, cannot provide default router information.
- Can provide additional information about servers (DNS, Bootfile, NTP, etc.)
- Not much vendor support (yet)

Static Addressing

- IPv6 can be assigned statically, same as IPv4
- Common to use one of two techniques for IPv4 overlay networks:
 - Prefix::<addr> (first 12 bits of 64 bit <addr> must be 0)
 - Either <addr> is IPv4 last octet(s) expressed as BCD,
 or <addr> is IPv4 last octet(s) converted to hex.
 - e.g. 192.0.2.154/24 -> 2001:db8:cafe:beef::154/64
 (BCD) or 2001:db8:cafe:beef::9a/64 (Hex)
 - These mappings won't conflict with autoconfigured addresses since autoconfigured addresses will never be 000x:xxxx:xxxx:xxxx.

Privacy Addresses

- Essentially a special form of Stateless
 Address Autoconfiguration which uses a new
 suffix for each flow and obfuscates the MAC
 address.
- RFC-3041
- Uses MD5 Hash with random component to generate temporary address
- Preferred and Valid lifetimes derived from SLAAC address

Multiple addresses per interface

- IPv4 has some support for this in most implementations.
- IPv6 has full support for this in all implementations.
- IPv4, multiple addresses/interface are exception.
- IPv6, single address on an interface nearly impossible in useful implementation (link local required, global optional)

IPSEC

- In IPv4, IPSEC is add-on software.
- In IPv6, IPSEC is a required part of any IPv6 implementation
- IPv6 does NOT require IPSEC utilization
- IPSEC is considerably easier to configure in IPv6.
- IPSEC automation may be possible in future IPv6 implementations.

Configuring IPv6 Native on Linux

- Interface Configuration depends on your distro.
- Debian based distros (Debian, Ubuntu, etc.) use /etc/interfaces
- Red Hat based distros (RHEL, Fedora, CentOS) use /etc/sysconfig/network-scripts/ ifcfg-<int>

/etc/network/interfaces

```
iface eth0 inet static
address 192.0.2.127
netmask 255.255.255.0
gateway 192.0.2.1

iface eth0 inet6 static
address 2001:db8:c0:0002::7f
netmask 64
gateway 2001:db8:c0:0002::1

iface eth1 inet6 auto

IPv6 (Autoconf)
```

/etc/sysconfig/network-scripts/ifcfg-<int>

```
DEVICE=eth0
ONBOOT=yes
                                           IPv4 (Static)
IPADDR=192.159.10.2
NETMASK=255.255.25.0
GATEWAY=192.159.10.254
IPV6INIT=yes
IPV6ADDR=2620:0:930::0200:1/64
                                           IPv6 (Static)
IPV6 DEFAULTGW=2620:0:930::dead:beef
IPV6 AUTOCONF=no
IPV6ADDR SECONDARIES="\
2001:470:1f00:3142::0200:1/64 \
2001:470:1f00:3142::0200:2/64"
IPV6INIT=yes
                                           IPv6 (Autoconf)
IPV6 AUTOCONF=yes
```

IPv6 without a native connection

- Three options (In order of preference)
 - 6in4 -- Tunnel your IPv6 in an IPv4 GRE Tunnel
 - 6to4 -- Tunnel your IPv6 in an auto-tunnel using an any-casted IPv6 mapping service
 - Teredo -- Tunnel your IPv6 in an auto-tunnel using a multi-server auto-configured process defined by Microsoft.

Why 6in4

- GRE is well understood by most networkers
- Simple and deterministic
- No anycast magic -- Simplifies debugging
- Controlled by two endpoint adminsitrators --Greatly simplifies debugging
- Disadvantage: Manual config, but, not hard.

Why 6to4

- Automatic configuration
- When it works, it's pretty clean and relatively self-optimizing.
- May be good option for mobile devices (laptop, cellphone, etc.)
- Hard to troubleshoot when it doesn't work.
- Disadvantage: Anycast == Non-deterministic debugging process.

Why Teredo?

- Autoconfiguration
- May bypass more firewalls than 6to4
- Enabled by default in Windows (whether you want it or not)
- Meredo available for Linux (client and server)
- Disadvantage: Complicated and tricky to debug if problems occur.

Configuring a 6in4 tunnel on Linux

- Not as straightforward as you would hope.
- Help available at http://tunnelbroker.net
- Example (route2, most 2.6+ kernels):

```
modprobe ipv6
ip tunnel add he-ipv6 mode sit remote 64.71.128.82 local 192.159.10.254
ttl 255
ip link set he-ipv6 up
ip addr add 2001:470:1F02:BE2::2/64 dev he-ipv6
ip route add ::/0 dev he-ipv6
ip -f inet6 addr
```

Recent Debian (and derivatives) have straightforward configuration in .../interfaces file.

Configuring 6in4 continued

Example Net Tools (most 2.4 kernels, some 2.6)

```
ifconfig sit0 up
ifconfig sit0 inet6 tunnel ::64.71.128.82
ifconfig sit1 up
ifconfig sit1 inet6 add 2001:470:1F02:BE2::2/64
route -A inet6 add ::/0 dev sit1
```

Also not supported in configuration files

Fedora 12 Configuration Files

Example:

/etc/sysconfig/network-scripts/ifcfg-sit1

```
DEVICE=sit1
BOOTPROTO=none
ONBOOT=yes
IPV6INIT=yes
IPV6TUNNELIPV4=64.71.128.82
IPV6TUNNELIPV4LOCAL=192.159.10.2
IPV6ADDR=2001:470:1f02:BE2::2/64
```

/etc/sysconfig/network

```
NETWORKING=yes
NETWORKING_IPV6=yes
HOSTNAME=myhost.example.com
IPV6_ROUTER=yes
IPV6FORWARDING=yes
```

Fedora 12 Configuration Files

Example:

/etc/sysconfig/static-routes-ipv6

```
sit1 ::/0
```

/etc/sysconfig/network-scripts/route6-sit1

```
2001:470:1f00:3142::/64
```

IPv6 For Free? YES!!

- Several tunnel brokers offer free IPv6.
 - My favorite is the HE Tunnelbroker at www.tunnelbroker.net
- If you or your organization has a presence at an exchange point with Hurricane Electric, we currently offer free IPv6 Transit.

Routing

- Usual suspects
 - OSPF (OSPFv3)
 - BGP (BGP4 Address Family inet6)
 - RA and RADVD
 - Support in Quagga and others

Firewalls

- ip6tables much like iptables
 - Excerpt from my ip6tables configuration

DNS

- Forward DNS
 - Instant IPv6 -- Just add AAAA
- Reverse DNS
 - Slightly more complicated
 - ip6.arpa
 - 2620:0:930::200:2 ->2620:0000:0930:0000:0000:0000:0200:0002
 - 2620:0000:0930:0000:0000:0000:0200:0002 ->2000:0020:0000:0000:0000:0390:0000:0262
 - 2000:0020:0000:0000:0390:0000:0262 ->
 2.0.0.0.0.0.2.0.0.0.0.0.0.0.0.0.0.0.0.3.9.0.0.0.0.0.2.6.2.ip6.arpa

DNS -- BIND Configuration

- Current BIND versions ship with IPv6 template zones (hints, rfc1912, etc.)
- IPv6 addresses valid in ACLs just like IPv4, same rules
- Zone configuration identical except reverse zones for IPv6 ranges called "ip6.arpa":

```
zone "0.3.9.0.0.0.0.0.0.2.6.2.ip6.arpa" IN {
    type master;
    file "named.2620:0:930::-48.rev";
};
```

DNS -- BIND Configuration

- In IPv6 Reverse Zone files, \$ORIGIN is your friend!
- Forward Zones A for IPv4, AAAA for IPv6, basically what you're used to:

```
mailhost IN A 192.159.10.2
IN AAAA 2620:0:930::200:2
```

Reverse Zones PTR records, as described above:

DNS -- Reverse DNS Details

In this example, we see:

- \$ORIGIN saves us lots of typing for 2620:0:930::200:
- Each entry contains the 4 hex digits for the last quad (0001, 0002, 0004)
- Note each nibble is a zone boundary

DNS -- Common Reverse DNS mistakes

- Not enough zeroes -- 2620:0:930::200:2 is much easier to type, but, remember for reverse DNS you have to expand all those suppressed zeroes before you reverse the address.
- Missing dots (.) -- Every nibble gets one.
 - 2.0.0.0.0.0.2.0.0.0.0.0.0.0.0.3.9.0.0.0.0.0.2.6.2
 - Do you see the error in the previous line?
- Reversing first then expanding
 - 0.0.0.2.0.2.0.0.0.0.0.0.0.0.0.0.3.9.0.0.0.0.0.2.6.2.0

Troubleshooting

- Mostly like troubleshooting IPv4
- Mostly the same kinds of things go wrong
- Just like IPv4, start at L1 and work up the stack until it all works.
- If you are using IPv4 and IPv6 together, may be easier (due to familiarity) to troubleshoot L1-2 on IPv4.

A wee bit about Neighbor Discovery and other tools

- No broadcasts, no ARP
- This is one of the key differences with IPv6.
- Instead a solicited node multicast address is used.
- IPv4: arp 192.0.2.123
- IPv6: ip -f inet6 neigh show 2620:0:930::200:2
- ping -> ping6
- traceroute -> traceroute6
- telnet, ssh, wget, etc. just work

Cool SSH trick

- Special for those that made it through the whole presentation:
- If you have a dual stack host you can SSH to in between an IPv4 only and an IPv6 only host that need to talk TCP, then, you can do this from the client:
- ssh user@dshost -L <lport>:server:<dport>
- Then, from the client, connect to localhost: Iport and the SSH tunnel will actually protocol translate the session.

SSH trick example

- myhost -- IPv6-only host 2620:0:930::200:f9
- dshost -- IPv4/v6 dual stack host: 192.159.10.2 and 2620:0:930::200:2
- desthost -- IPv4-only host 192.159.10.100
- On myhost I type:
 - ssh owen@2620:0:930::200:2 -L 8000:192.159.10.100:80
 - □ Then, I can browse to http://[::1]:8000
- My browser will connect to the ssh tunnel via IPv6, and, the SSH daemon at dshost will pass the contents along via IPv4.

Staff Training

- Hopefully this presentation works towards that.
- You'll need more.
- Plan for it.
- Budget for it.
- Allocate time for it.
- If possible, have the staff being trained leave their pagers/blackberries/iPhones/etc. in the car during training.

Q&A

Contact:

Owen DeLong
IPv6 Evangelist
Hurricane Electric
760 Mission Court
Fremont, CA 94539, USA
http://he.net/

owend at he dot net +1 (408) 890 7992