
Experiences with Network Automation
at Dyn

NANOG 67

Carlos Vicente
Dyn

2

What is Dyn
● Internet Performance (DNS, E-mail, Analytics)
● 20+ data centers
● Hundreds of network devices
● Small teams
● Automation is a priority at every level

3

Project “Kipper”
● Continuous integration approach to configuration management
● Dyn code + open source tools
● See presentation at NANOG63
● This talk is about successes and lessons learned since then

4

5

Here comes a change

6

7

So we’ve been using it and...
● It actually works :-)

● We are using Kipper to rebuild all our edge sites globally
○ HK first...halfway around the world seemed best place to start ;-)

● Everybody in NetEng uses it

● SysEng uses it when provisioning new hardware
○ NetEng is out of the port turnup game YAY!

● We learned some things, and made it better.

8

Some stats
● ~300 devices in inventory (and growing)

● 88 template files (Jinja2)

● 900K lines of generated configuration (XML)

● 1286 repository commits (average 4.7 commits per active day)

● 17 Authors

● Most commits on Thursdays around 4pm? ¯_(ツ)_/¯

9

Too many device groups
● Grouping hosts in manual inventory was not ideal

Fix
1. Use Ansible’s Dynamic Inventory

a. Python script reads list of devices and creates groups:
b. Based on naming convention

i. Site (US-NBN1, JP-TYO1, etc.)
ii. Function (Edge, Spine, ToR, etc.)
iii. Intersections of these

c. Based on model (MX, EX, etc)

10

Too much data
● Too much data to put in YML files

Fix (example)
1. Map all interconnections in a shared spreadsheet, convert to CSV

and use that to feed Ansible’s inventory
2. Use subnet prefixes and calculate IPs in the script
3. CSV file is version controlled

11

Garbage In, Garbage Out
● Need initial data from someplace, which means a human
● IPs and interfaces come from CSV files
● Humans make mistakes, like duplicate and wrong IPs

Fix
1. Added data sanity checker to inventory script
2. IP blocks for sites are now automatically subnetted (v4/v6)

common network design = codified network design
3. Point to point and other data now generated by a script

12

Server Provisioning
● We do multi-chassis LAG between ToRs and new servers
● LACP needs to be “forced-up” on one switch at provisioning time
● We were temporarily changing the ports each time
● We would forget to remove the “force-up” parameter later. Bad.

Fix
1. Configure all unused ports ready for provisioning by default
2. Once server is installed, SysEng updates server port inventory and

Kipper does the rest

13

Is everything still working?
● “I’m positive this little change won’t break anything.”
● “Are you sure that was working before my change?”
● “&*(^! OK, I’ll rollback.” :-(

● We didn’t have a good way to test connectivity both before and after
changes. We have a lot of flows intra/inter sites/routing-instances.

Fix
1. Wrote Ansible playbook that uses Netconf to test server flows

between sites and between routing instances
2. Added a playbook to do rollbacks in bulk

14

Testing with one command
$ make pingtest

PLAY [Reachability tests] **

TASK [Ping test] ***
ok: [tor104a.us-xyz1] => (item={u'src_ip': u'198.168.145.195', u'dst_ip': u'10.20.112.130',
u'src_ri': u'PUBLIC', u'descr': u'From tor108b.us-xyz1 RI 1200 to tor102a.us-zzz1 RI
1300'})
ok: [tor104b.us-xyz1] => (item={u'src_ip': u'10.20.49.131', u'dst_ip': u'10.20.112.130',
u'src_ri': u'PRIVATE', u'descr': u'From tor104b.us-xyz1 RI 1300 to tor102a.us-zzz1 RI
1300'})
ok: [tor108a.us-xyz1] => (item={u'src_ip': u'198.168.145.194', u'dst_ip': u'10.20.128.2',
u'src_ri': u'PUBLIC', u'descr': u'From tor108a.us-xyz1 RI 1200 to tor102a.hk-abc1 RI
1300'})
ok: [tor104a.us-xyz1] => (item={u'src_ip': u'10.20.49.130', u'dst_ip': u'10.20.128.2',
u'src_ri': u'PRIVATE', u'descr': u'From tor104a.us-xyz1 RI 1300 to tor102a.hk-abc1 RI
1300'})

15

Multipoint tests with Ansible
- name: Reachability tests
 hosts: ping-nodes
 connection: local
 tasks:
 - name: "New Network ping tests"
 junos_ping:
 host={{ inventory_hostname }}
 user=admin
 dest_ip={{ item.dst_ip }}
 source_ip={{ item.src_ip }}
 routing_instance={{ item.src_ri }}
 rapid=yes
 count=3
 timeout=5
 acceptable_packet_loss=1
 with_items: "{{ ping_targets }}"

16

Change Awareness
● Sometimes we would forget to notify others when we pushed a

change
● NOC in particular did not like this...we couldn’t imagine why? :-)

Fix
1. Modify the deploy job to notify NOC and NetEng automatically

17

Unattended deployments
● We wanted to make the “push” happen automatically after a merge
● It wasn’t realistic
● Sometimes a change depends on another change

○ Example: Need to change policies in edge routers, then change
the spine layer, etc.

Fix
1. A human makes these decisions.
2. After a change is merged, we update our copy of the repo and run

Ansible ($ make deploy something something)

18

Legacy configs
● Very hard to adapt configurations crafted by hand over years

○ Inconsistencies hard to fix while in production
○ Is this section still necessary…?

Fix
1. Focus on new sites, new designs

a. Fully automate from the beginning
2. Then go back and fix the old as time allows

a. Tackle one section at a time
b. Or better yet, upgrade to new design

19

Audits
● Someone makes a manual change. Nobody finds out until we have

to push a template

Fix
1. Schedule nightly dry-runs in Jenkins
2. Send diffs to Slack channel
3. Team decides if the change needs to be overwritten, or if the

templates need to be updated to reflect it

20

Gathering Facts
● We used Netconf to gather “facts” from each device before rendering the

templates
○ If version > 12.3 include this section
○ If model == ‘SRX’ change this limit

● Did not allow us to generate and verify configs prior to new devices being
online

● Added significant delay to the dry-run process

Fix
1. Keep this information in the inventory

a. Minor downside: need to update the inventory after a firmware upgrade

21

Interrupted dry-runs
● Jenkins dry-runs take a while

○ Many CPU-challenged devices take over 2 minutes to do a
“commit check”...the joys of cheap L3 switches

● Jenkins run gets interrupted
○ Device config is locked by another user on the CLI
○ A device is out of storage space, can’t commit
○ Random Netconf errors that later go away

● Generally we solve the issue quickly and then tell Jenkins to do the
dry-run again

● Sometimes the issue is more involved
○ Comment out the device from Ansible inventory temporarily

22

Challenges with Git
● Git is hard (at first)

○ “Uh oh! I didn’t create a branch”
■ Can’t interrupt and fix something else
■ Committed a change that was not accepted

○ “I merged from the wrong branch”
○ “Didn’t commit before switching to master”
○ “I messed it up, don’t know what I did...”

Fix
1. Training

Dyn inside joke: all three-letter words are hard.
Git, DNS, BGP...

23

But it works for me!
● Everybody makes changes on their local repo on their Mac
● Different OS versions, different library versions present challenges
● Never serious issues, but can be annoying

Fix
1. We’re going to move to a common VM that everybody accesses

remotely.

24

Coding
● No complex code necessary with these tools, but...

○ Still foreign for network folks without a programming
background

○ Important to learn at least the basics:
■ Ansible variables, playbooks...
■ Data structures, loops, regular expressions...

25

Consistency, what a concept!
In almost all cases, two or more things that were
supposed to be the same, were not
● Copy/paste mistakes
● “Forgot the redundant device”
● “Forgot that site”

● Kipper really helped us notice and
correct these issues

26

The Future
● We want to test beyond our own

network:
○ BGP announcements and their

propagation across Internet
○ Reachability across Internet

● Solution: Use Dyn’s Internet
Intelligence API and integrate it in our
change management

27

Conclusions
● Network automation is not without its challenges

○ Some technical, some organizational
● But it is an investment that pays off significantly in

many ways

28

Questions?

29

Thank you

cvicente@dyn.com

For more information on
Dyn’s services visit dyn.com

mailto:cvicente@dyn.com
mailto:cvicente@dyn.com

