
NetOps Coding 201
auto remediation for your network!

NANOG 66

02.10.2016

david swafford

continuing
our theme

2

automating

3

the remediation
of network faults

4

based on parsing of
syslog messages

5

focusing today

6

on
building the system

7

8

goals
• organized to support 100s of

remediations

• fast enough to react to 100s of
events at at time

• simple enough to manage
without a CS background

how it works

9

10

device B

device A

Ethernet

Ethernet

11

device

device link down!
X device B

device A

12

syslog
server

sends 
message

1

device

device X

%ETHPORT-5-IF_DOWN_LINK_FAILURE:	Interface	
Ethernet5/1	is	down	(Link	failure)

13

syslog
server

sends 
message

parser

tails
messages

1

2

device

device X

%ETHPORT-5-IF_DOWN_LINK_FAILURE:	Interface	
Ethernet5/1	is	down	(Link	failure)

14

syslog
server

sends 
message

parser

tails
messages

1

2

device

device X

regex converts
message into data

15

syslog
server

sends 
message

parser db
creates

event

tails
messages

1

2
3

device

device X

16

syslog
server

sends 
message

parser db
creates

event

event
processor

gets

event

tails
messages

1

2
3 4

device

device X

17

syslog
server

sends 
message

parser db
creates

event

event
processor

gets

event

tails
messages

1

2
3 4

remediation

runs
5

device

device X

18

syslog
server

sends 
message

parser db
creates

event

event
processor

gets

event

tails
messages

1

2
3 4

remediation

runs
5

remediates6
device

device X

19

syslog
server

sends 
message

parser db
creates

event

event
processor

gets

event

tails
messages

1

2
3 4

remediation

runs
5

remediates6

saves
result

7

device

device X

remediates

20

syslog
server

sends 
message

parser
creates

event

tails
messages

1

2
3

6
device

device Xtoday's focus

db
event

processor
gets

event

4

remediation

runs
5

saves
result

7

demo!

21

22

syslog generator

23

syslog generator

24

syslog generator

25

syslog generator

26

syslog parser

27

syslog parser

28

syslog parser

29

event processor

30

event processor

31

event processor

32

event processor

33

event processor

the lab
environment

34

a virtual machine of
Ubuntu desktop

35

36

customized with

iPython!
and extras

Python 2.7.11 & 3.5.1
MySQL server & Python libs

37

importing the
virtual appliance

38

download it from netengcode.com!

http://netengcode.com

39

40

41

42

43

TERMINAL

log-in details

user:	demo	
pass:	demo

44

keyboard shortcuts to
break out of the VM

f enter or leave
full-screen

getting started

45

organizing
our data

46

47

the event as a tuple

48

the event as a tuple

49

what's the problem?

50

what's the problem?
new field!

data formats will change

51

the event as a dictionary

52

the event as an object

link

53

accessing attributes of an object

link

which to choose?

54

55

the advantage of an object

enforcement of structure

56

the advantage of an object

input validation (not shown)

57

where to find it?

:Event()

• a database (MySQL) 

• an events table  

• a library for managing our data

• installation of "netfbar" 
(a Python package)

58

what's already staged?

59

database setup

60

netfbar package

the parser

61

62

where to find it?

remediations,
refactored.

63

64

a few problems

• duplication

• no structure

• limited debug-ability

organizing our
remediations

65

66

"sparse is better than dense"

1 remediation, 1 file.

...
remediations, v2.

67

code that repeats in each remediation

68

moved to a  
base remediation

remediations, v2.

69

from base.BaseRemediation

remediations, v2.

connecting remediations
to error codes

70

71
a dictionary of "error_code" to "module"

connecting remediations
to error codes

72

connecting remediations
to error codes

73

where to find it?

questions?

74

building the
event processor

75

starting simple

76

77

building it live

78

building it live

79

building it live

80

building it live

81

building it live

82

no events?

83

building it live

84

building it live

85

building it live

86

building it live

87

building it live

88

building it live

89

building it live

90

building it live

91

building it live

92

building it live

(no logging in the default remediation)

93

building it live

create a function for
handling one event

94

building it live

iterating through events

95

building it live

so slow!

questions?

96

making this a
little faster

97

• threading
• multiprocessing
• asyncio
• gevent
• go...

98

so many choices!

starting simple!

99

threading &
multiprocessing

100

101

threading's pros

https://docs.python.org/3/library/threading.html

• simple API

• lightweight

• shared memory with the
parent

102

threading's cons

https://docs.python.org/3/library/threading.html

• not true parallelism

• all threads are limited to a
single CPU - the parent's

103

threads are evil!?!

https://docs.python.org/3/library/threading.html

"In CPython, due to the [GIL], only one thread
can execute Python code at once" 

... 
 

"However, threading is still an appropriate model
if you want to run multiple

I/O-bound tasks simultaneously."

104

multiprocessing's pros

https://docs.python.org/3/library/threading.html

• simple API

• true parallelism using all CPUs

105

multiprocessing's cons

https://docs.python.org/3/library/threading.html

• based on forking (cloning/
copying the current process)

• heavier memory footprint

• stale memory / state

106

multiprocessing's cons

https://docs.python.org/3/library/threading.html

• no shared memory with
parent

working
with threads

107

108

working with threads

https://docs.python.org/3/library/threading.html

109

working with threads

https://docs.python.org/3/library/threading.html

target - the method to run
inside the thread

110

working with threads

https://docs.python.org/3/library/threading.html

args - the values passed as
input to process_event()

111

working with threads

https://docs.python.org/3/library/threading.html

.start() - spins up the thread in the
background (the for loop continues)

112

working with threads

https://docs.python.org/3/library/threading.html

caution! this is dangerous!
(starting an unknown number of threads)

113

adding visibility to process_event()

114

starting our threads again (with visibility)

https://docs.python.org/3/library/threading.html

115

starting our threads again (with visibility)

https://docs.python.org/3/library/threading.html

oh my!
...that just started 1020 threads!

creating a
thread pool

116

117

creating a thread pool

the work to perform
inside a thread

118

creating a thread pool

starting the
background threads

119

creating a thread pool

looking at active threads

120

creating a thread pool

looking at active threads

121

creating a thread pool

fetching events that we'll
send to the threads

122

creating a thread pool

123

creating a thread pool

https://docs.python.org/3/library/threading.html

creating a queue to pass
events to threads

124

creating a thread pool

putting the
pieces together

125

creating a thread pool

putting the
pieces together

...

126

creating a thread pool

now, continuously!

127

creating a thread pool

questions?

128

closing out

129

130

syslog
server

sends 
message

parser db
creates

event

event
processor

gets

event

tails
messages

1

2
3 4

remediation

runs
5

remediates6

saves
result

7

device

device X

131

goals
• organized to support 100s of

remediations

• fast enough to react to 100s of
events at at time

• simple enough to manage
without a CS background

NANOG 66

02.10.2016

david swafford

#netengcode

