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continuing 
our theme

2



automating
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the remediation 
of network faults
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based on parsing of 
syslog messages
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focusing today
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on 
building the system
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goals
• organized to support 100s of 

remediations 

• fast enough to react to 100s of 
events at at time 

• simple enough to manage 
without a CS background



how it works
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%ETHPORT-5-IF_DOWN_LINK_FAILURE:	Interface	
Ethernet5/1	is	down	(Link	failure)
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remediates
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demo!
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syslog generator
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syslog generator
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syslog generator
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syslog generator
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syslog parser
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syslog parser
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syslog parser
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event processor
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event processor
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event processor
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event processor
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event processor



the lab 
environment
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a virtual machine of 
Ubuntu desktop
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customized with

iPython! 
and extras 

Python 2.7.11 & 3.5.1 
MySQL server & Python libs
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importing the 
virtual appliance
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download it from netengcode.com!

http://netengcode.com
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TERMINAL

log-in details 

user:	demo	
pass:	demo
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keyboard shortcuts to 
break out of the VM

f enter or leave 
full-screen 



getting started
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organizing 
our data
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the event as a tuple
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the event as a tuple
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what's the problem?
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what's the problem?
new field!

data formats will change
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the event as a dictionary
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the event as an object

link
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accessing attributes of an object

link



which to choose?
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the advantage of an object

enforcement of structure
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the advantage of an object

input validation (not shown)
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where to find it?

:Event()



• a database (MySQL) 

• an events table  

• a library for managing our data 

• installation of "netfbar" 
(a Python package)
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what's already staged?
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database setup
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netfbar package



the parser
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62

where to find it?



remediations, 
refactored.
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a few problems

• duplication 

• no structure 

• limited debug-ability



organizing our 
remediations
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"sparse is better than dense"

1 remediation, 1 file.



...
remediations, v2.
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code that repeats in each remediation
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moved to a  
base remediation

remediations, v2.
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from base.BaseRemediation

remediations, v2.



connecting remediations 
to error codes
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71
a dictionary of "error_code" to "module"

connecting remediations 
to error codes
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connecting remediations 
to error codes
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where to find it?



questions?
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building the 
event processor
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starting simple
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building it live
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building it live
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building it live
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building it live
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building it live
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no events?
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building it live
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building it live
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building it live
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building it live
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building it live
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building it live

(no logging in the default remediation)
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building it live

create a function for 
handling one event
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building it live

iterating through events 
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building it live

so slow!



questions?
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making this a 
little faster
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• threading 
• multiprocessing 
• asyncio 
• gevent 
• go...
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so many choices!



starting simple!
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threading & 
multiprocessing
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101

threading's pros

https://docs.python.org/3/library/threading.html

• simple API 

• lightweight 

• shared memory with the 
parent
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threading's cons

https://docs.python.org/3/library/threading.html

• not true parallelism 

• all threads are limited to a 
single CPU - the parent's
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threads are evil! ....?!

https://docs.python.org/3/library/threading.html

"In CPython, due to the [GIL], only one thread 
can execute Python code at once" 

... 
 

"However, threading is still an appropriate model 
if you want to run multiple 

I/O-bound tasks simultaneously."
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multiprocessing's pros

https://docs.python.org/3/library/threading.html

• simple API 

• true parallelism using all CPUs
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multiprocessing's cons

https://docs.python.org/3/library/threading.html

• based on forking (cloning/
copying the current process) 

• heavier memory footprint 

• stale memory / state
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multiprocessing's cons

https://docs.python.org/3/library/threading.html

• no shared memory with 
parent



working 
with threads
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working with threads

https://docs.python.org/3/library/threading.html
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working with threads

https://docs.python.org/3/library/threading.html

target - the method to run 
inside the thread
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working with threads

https://docs.python.org/3/library/threading.html

args - the values passed as 
input to process_event()
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working with threads

https://docs.python.org/3/library/threading.html

.start() - spins up the thread in the 
background (the for loop continues)



112

working with threads

https://docs.python.org/3/library/threading.html

caution!  this is dangerous! 
(starting an unknown number of threads)
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adding visibility to process_event()
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starting our threads again (with visibility)

https://docs.python.org/3/library/threading.html
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starting our threads again (with visibility)

https://docs.python.org/3/library/threading.html

oh my!   
...that just started 1020 threads!



creating a 
thread pool
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creating a thread pool

the work to perform 
inside a thread
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creating a thread pool

starting  the 
background threads
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creating a thread pool

looking at active threads
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creating a thread pool

looking at active threads
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creating a thread pool

fetching events that we'll 
send to the threads
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creating a thread pool
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creating a thread pool

https://docs.python.org/3/library/threading.html

creating a queue to pass 
events to threads
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creating a thread pool

putting the 
pieces together
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creating a thread pool

putting the 
pieces together

...
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creating a thread pool

now, continuously!
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creating a thread pool



questions?
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closing out
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goals
• organized to support 100s of 

remediations 

• fast enough to react to 100s of 
events at at time 

• simple enough to manage 
without a CS background
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