
Petr Lapukhov
Network Engineer

Move Fast, Unbreak Things!
Network debugging at scale

People who made this possible

Aijay Adams
Lance Dryden
Angelo Failla
Zaid Hammoudi
James Paussa
James Zeng

Basics of fault detection
How people fix broken networks

Data-center network (3)

Rack switches !

Spine switches!

Cluster!
switches!

-  Multi-stage Clos Topologies
-  Lots of devices and links
-  BGP Only
-  IPv6 >> IPv4
-  Large ECMP fan-out
-  L2 and L3 ECMP

Data-Center !

Data-Center!
Backbone network (3)

-  MPLS core
-  BB = Backbone Router (LSR)

-  Data-center attachment
-  DR = Datacenter Router (LER)

-  Auto-bandwidth
-  ECMP over MPLS tunnels

BB! BB!

DR! DR!

BB! BB!

DR! DR!

MPLS !
Core!

MPLS!
LSP!

Detecting packet loss (4)
Standard counters

fsw001.p001.f01.atn1# show platform trident counters
Debug counters
 Description
T2Fabric19/0/1 RX - Non congestion discards
T2Fabric19/0/1 TX - IPV4 L3 unicast aged and dropped pkts
T2Fabric19/0/1 RX - Receive policy discard
T2Fabric19/0/1 TX - L2 multicast drop
T2Fabric19/0/1 RX - Tunnel error packets
T2Fabric19/0/1 TX - Invalid VLAN
T2Fabric19/0/1 RX - Receive VLAN drop
T2Fabric19/0/1 RX - Receive multicast drop
T2Fabric19/0/1 TX - Dropped because TTL counter
T2Fabric19/0/1 RX - Receive uRPF drop
T2Fabric19/0/1 TX - Packet dropped due to any condition
T2Fabric19/0/1 RX - IBP discard and CPB full
T2Fabric19/0/1 TX - Miss in VXLT table counter

Non-Standard counters

Too slow… Unreliable…

How human debugs it? (4)
-  Ping/hping/nping (TCP/ICMP/UDP probing)
-  Change src port to try all ECMP paths
-  Find a broken path, then run traceroute over it
-  ping && traceroute are still important

NetNORAD
The network fault detector

Network!

Massive pinging FTW
-  Run “pingers” on some machines
-  Run responders on lots of machines

-  Targets count ~= 100x pingers count

-  Collect packet loss and RTT…
-  Analyze and report!

Responders!

Pingers!

NetNORAD evolution (4)
-  1st Run`ping` from python agent
-  2nd Raw sockets, fast TCP probes
-  3rd Raw sockets, fast ICMP probes
-  Now: UDP probing + responder agent

Pinger and Responders (5)
Pingers! Responders!

!
!
!

Open sourced (C++), !
https://github.com/facebook/UdpPinger !

Send UDP probes to target list !
Timestamp & Log results !
High ping-rate (up to 1Mpps) !
Set DSCP marking !

Receive/Reply to UDP probe!
Timestamp!
Low load: thousands of pps!
Reflect DSCP value back !

Allocating pingers and targets (2)
Pingers!

1+ cluster per DC!
10+ racks per cluster!
Two pingers per rack !

!
!

Targets!
2+ targets per each rack !
10’s of thousands targets !
Consult host alarms !
!

Probe tttimestamping
-  Path changes / congestion
-  Kernel time-stamps
-  Application timeout tuning

Why UDP probing?
-  No TCP RST packets
-  Efficient ECMP
-  RSS friendly
-  Extensible

Signature!

SentTime!

RcvdTime!

ResponseTime!

Traffic Class !

Probe Format !

CDeployment caveats (4)
Caveat! Solution!

!
!

!
Polarization with ICMP!
Slow IPv6 FIB lookups !
High-CPU boxes !
Checksum offloading !

Use UDP!
4.X kernels !
Multi-threaded responder/RSS!
Disable offloading ! !

NetNORAD
How to ping and process data?

CChallenges (4)
-  Nx 100Gbps of ping traffic
-  Tens thousands of targets
-  Hundreds of pingers
-  Lots of data to process
-  We really do not care about each host…
-  …The unit of interest is “cluster” health

The network hierarchy (4)

Backbone!

Region 1 !

DC 1! DC 2!

Cluster 1 !

Rack 1 !

Cluster 2!

POP 2!

Rack 2 !

Cluster 1!

Region 2 !

Rack 1! Rack 2!

POP 1 !

Pinging inside clusters (4)
-  Detect issues with rack switches
-  Dedicated pingers per cluster
-  Probe ALL machines in cluster
-  Store time-series per host/rack

-  Think HBase for storage

-  Lags real-time by ~2-3 minutes
RSW 1! RSW 2! RSW 3!

target!

target!

CSW 1!
CSW 2!

CSW 3!
CSW 4!

target!

target!

pinger!

pinger!

CSW – cluster switch!
RSW – rack switch!

Region !

Data-Center !

WAN!

Pinging the clusters (4)

Pinger 1: Same DC
Pinger 2: Same Region
Pinger 3: Outside of region

Data-Center !

Target!
Cluster!

Region !

Data-Center !

Cluster !

Cluster!
Pinger 1!

Cluster!
Pinger 2!

Pinger 3!

Proximity tagging (3)

Proximity Scope Goal

Pinging hierarchy

Proximity Scope Goal

Outside of region! Across backbone
network ! End-to-end issues !

Pinging hierarchy

Proximity Scope Goal

Outside of region! Across backbone
network ! End-to-end issues !

Same region ! Between data-centers in
region!

Issues inside/between
DCs !

Pinging hierarchy

Proximity Scope Goal

Outside of region! Across backbone
network ! WAN issues!

Same region ! Between data-centers in
region! Issues between DCs !

Same DC! Inside one data-center! Issues in cluster
switches!

Processing the data

Processing pipeline: Scribe (4)
-  Scribe: distributed logging system
-  Similar OSS project: Kafka
-  Pingers write results
-  Processors consume them
-  Propagation delay ~1-20 seconds

Shard! Shard ! Shard ! Shard !

pingers!
(write)!

Processors!
(read)!

Data-set!

Alarming on packet loss (4)
-  Build packet-loss time-series
-  Track percentiles
-  Alarm on rising threshold
-  Clear on falling threshold
-  Time to detect loss: 20 seconds

Alarm!

Clear Alarm!

90th pctile!

Cluster X !
DC data !

Visual analysis: Scuba
-  In-memory row-oriented storage
-  “Scuba: Diving into Data at Facebook”
-  Similar OSS project: InfluxDB

Detecting false-positives

“Bad” target detection (3)

target!
target!
target!

Rack 2! Rack 3!

target!
target!

Rack 1!

target!
target!

Rack 4!

Machine reboots!

-  Baseline loss
-  Packet loss spike
-  Filter outliers
-  Done in pinger

target!target!

“Bad” Pinger problem (3)
-  Bad cluster switch!
-  Pingers see loss everywhere
-  Population size is small
-  Harder to weed outliers

 pinger!
pinger!

pinger!
pinger!

rsw 1! rsw 2!

cluster !
sw1!

cluster !
sw2!

cluster !
sw1!

Line-card !
malfunction !

Loss!
?!

Loss
?!

Region !

“Bad” Pinger detection (2)

Data-center !

Cluster X !
Pinger 1!

Data-center !

Pinger 2!
-  Need more data…
-  Monitor pinger cluster
-  Use DC/Region pingers
-  Mark “bad” clusters
-  Done in processor

Conclusions
-  Pinger/responder asymmetry
-  Real-time is key
-  Pinging hierarchy
-  False positive elimination

Isolating network faults
Detecting is not everything

Region !

Data-Center !

WAN!

Root cause isolation (4)

Pinger 1: no loss to X!
Pinger 2: I see loss!
Pinger 3: I see loss too!

Cluster!

Data-Center !

Cluster X!

Region !

Data-Center !

Cluster !

Cluster!
Pinger 1!

Cluster!
Pinger 2!

Pinger 3!

Data-Center !

Cluster X ! Cluster!

Issue!

Likely problem with !
spine switches!

Downstream suppression (3)

Cluster 2! Cluster 3! Cluster 4! Cluster 5!Cluster 1!

Loss! Loss! Loss!

Data-Center
X!

Data-Center
X!

Loss!

Multiple alarms!

Single alarm !

Next steps to isolate (4)
-  Approximate location

-  Still lots of devices/links
-  Check device counters
-  if that does not help…
-  Remember traceroute?

Custer 1! Custer 2! Custer 3!
Loss!

Fbtracert: fast and wide traceroute (6)

1! Target!

3!

2!

4!

5!

6!

7!

8!

9!

Source! 10!

Src ports!
37701!
32702!
32703!
32704!

TTL 1-6!

Src ports!
32701!
32703!

TTL 2-6!

Src ports!
32702!
32704!

TTL 2-6!

Src ports !
32701!

TTL 3-6!

Src ports !
32703!

TTL 3-6!

Src ports !
32701!

TTL 4-5!

Src ports!
32703!

TTL 4-5!

Src ports !
32701!
32703!

TTL 5-6!

Src ports!
32702!
32704!

TTL 5-6!

Src ports!
32702!

TTL 3-6!

Src ports !
32704!

TTL 3-6!

Src ports!
32702!

TTL 4-5!

Src ports!
32704!

TTL 4-5!

Src Ports!
37701!
32702!
32703!
32704!
TTL 6!

Loss!

Fbtracert: fast and wide traceroute

Path! Sent! Rcvd!

1! 20 ! 20!

2! 20 ! 20!

4! 20 ! 20!

8! 20 ! 20!

10! 20 ! 14!

TGT! 20 ! 15!

Port 32701!
Path! Sent! Rcvd!

1! 20! 20!

3! 20! 20!

6! 20! 20!

9! 20! 20!

10! 20! 20!

TGT! 20! 20!

Port 32702!
Path! Sent! Rcvd!

1! 20! 20!

2! 20! 20!

5! 20! 20!

8! 20! 20!

10! 20! 16!

TGT! 20! 17!

Port 32703!
Path! Sent! Rcvd!

1! 20! 20!

3! 20! 20!

7! 20! 20!

9! 20! 20!

10! 20! 20!

TGT! 20! 20!

Port 32704!

Fbtracert limitations (5)
-  CoPP drops ICMP responses
-  Paths may flap (MPLS LSP)
-  ICMP gets tunneled with MPLS TE
-  ICMP responses from wrong interfaces

Open sourced (Golang), !
https://github.com/facebook/fbtracert!

Conclusions
-  Fault isolation is actively evolving
-  Traceroute approach looks generic
-  Limited by current hardware
-  Backbone path churn is a serious challenge

Evolving fault detection & isolation
Near and far future

Support for on-box agents (4)
-  Run same code on routers
-  POSIX API
-  Other SDK is welcome
-  Some vendors already do that
-  Be like FBOSS !

Streaming telemetry (3)
-  Publishing device counters
-  Faster detection
-  Protobuf/Thrift for encoding
-  Limited amount of counters
-  Platform-specific

Switch!

Consumer 1!

Consumer 2!

Drop!
counters!

Thrift/Protobuf!

In-band telemetry (4)
-  Next generation of silicon emerging
-  Embed device stats in packets

-  E.g. device ID, or queue depth

-  Use extra space in UDP probes
-  Allow for real-time path tracing

Switch!

IP/UDP hdr!

Device ID!

IP/UDP hdr!

Queue depth !

