

Investigation of Dependencies between IXPs

Daniel Kopp

R&D DE-CIX

Introduction

- » How robust is the IXP interconnection system?
 - » What happens if a large IXP fails?
 - » Does it affect other IXPs and how?
- » There was an incident, which we investigated
- » This presentation is about the results
- » What can we learn from this?

Incident AMS-IX Amsterdam

- » 13th May 2015 at 12:22 pm
- » Loop with 4 x 100GE created. Traffic was blackholed.
- » About 500 of 600 BGP sessions at the route servers dropped

What would be the impact to DE-CIX?

Impact at DE-CIX Frankfurt

- » Decreased traffic volume
- » Drop of about 240Gbit/s within5 minutes
- » Recovering after about 10 minutes

Time Flow

AMS-IX

13th May 2015: (information from public sources)

- 1. 12:22 pm Loop with 4 x 100GE created. Traffic was blackholed.
- 2. 12:25 pm About 500 of 600 BGP sessions at the route servers dropped
- 12:29 pm NOC reacted and deactivated ports responsible for loop
- 4. 12:40 pm BGP sessions to route server are back online

What could be the reason to this behavior? What could be a dependencies?

We found three answers... so far...

1. Remote Peering Routers Overloaded

- » A single remote peering router is connected to more than one IXP
- » The remote peering router is overloaded with broadcast traffic coming from one IXP
- » Overloaded remote peering router drops all BGP sessions

» Four customers at DE-CIX Frankfurt affected with a traffic volume drop of 0.92 Gbit/s

2. Asymmetric Routing Paths

- » Are there routing paths that contain different IXPs on the upand downstream?
- » Example:
 - » Upstream (gray) contains IXP A
 - » Downstream (red) contains IXP B

Selecting the Right Tool

» DE-CIX selected RIPE Atlas because of:

- 1. Extensive coverage of probes
- 2. Built-in traceroute measurement
- 3. Easy to access REST-API
- 4. Easy to obtain measurement results

- » Make jAtlasX available as open source:
 - » https://github.com/de-cix/jAtlasX
- » Apache 2.0 license

2. Asymmetric Routing Paths II

Measurement study (RIPE Atlas):

- » Number of AS-to-AS paths with a traffic drop > 200Mbit/s at DE-CIX Frankfurt: 183
- » ASes connected to DE-CIX Frankfurt and AMS-IX Amsterdam: 323
 - » ASes hosting RIPE Atlas probes: 171
- → 50 AS-to-AS routing paths which fulfill all above requirements

Measurement results:

- » 38% of all AS-to-AS paths with at least one asymmetric IXP path
- » 8% of all AS-to-AS paths traversed no IXP at all

2. Asymmetric Routing Paths

Impact Details

Source ASN with Traffic Loss > 5%

Destination ASN with Traffic Loss > 3%

3. Layer 8: Less Users

- » Users experienced connection errors
- » Users were annoyed by broken "Internet" and switched activities
- » Less users resulted in less traffic
- » Impact on traffic volume is hard to measure

Other Results

Summary and Takeaway

Reasons for traffic volume dependencies between IXPs:

- 1. Remote peering routers overloaded
- 2. Asymmetric routing paths
- 3. Layer 8: Less users

Good news: The Internet infrastructure is not hit largely if a large IXP fails.

Takeaway:

- » Knowledge of traffic dependencies of IXPs
- » Useful for designing peering and especially remote peering
- » Improve recovery time e.g. route server BFD

By joining DE-CIX, you become part of a universe of networks. Everywhere.

DE-CIX. Where networks meet.

Where networks meet

DE-CIX Management GmbH Lindleystr. 12 60314 Frankfurt Germany Phone +49 69 1730 902 0

rnd@de-cix.net

шшш.de-cix.net