

DDoS Mitigation Tutorial NANOG 69

Krassimir Tzvetanov

Introduction and overview

Introduction

Who am I?

What is the target audience of this tutorial?

Let me know if I speak too fast!

Let's make it interactive!

Overview

- Discuss what DDoS is, general concepts, adversaries, etc.
- What is currently fashionable?
- Go through a networking technology overview, in particular the OSI layers, sockets and their states
- Look at popular attack types at the different layers DNS, NTP, SSDP reflection, SYN Flood
- Discuss reflection and amplification
- Mitigations

What is DoS/DDoS?

Resource exhaustion... which leads to lack of availability

Consider:

- How is it different from CNN pointing to somebody's web site?
- How is that different from company's primary Internet connection going down?

What is Denial of Service?

From security point of view?

- Decreased availability
- From operations point of view?
- > An outage
- From business point of view?
- Financial losses

One system is sending the traffic vs many systems are sending the traffic

In the past it _usually_ meant difference in volume

Over the past 3 years, due to reflective attacks, this has been changing rapidly

The problem?

•Bandwidth in 2010 – little over 100 Gbps?

- •2013 over 300 Gbps
- •2014 over 400 Gbps
- •Nowadays irrelevant, it is all about bragging rights

Source: Arbor Networks Yearly Report

NANOG 69: DDoS Tutorial

Figure 1 Source: Arbor Networks, Inc.

Contributing factors

- Embedded devices (mostly home routers)
- Available reflectors (DNS, NTP, SSDP)

...with ability to amplify

- Outdated Content Management Systems (CMSes)
- Hosting providers allowing reflection
- More overall bandwidth available

Embedded Devices (aka IoT)

- Home routers increasing threat
 - -Default passwords
 - -Other vulnerabilities (NetUSB)
 - –XBOX attacks Krebs' blog (re: 2014 XBOX/Play Station attacks)
 - -Some do not allow the user to turn off DNS resolution
 - -Network diagnostic tools

Compromised CMSes

- Most targeted Content Management Systems:
 - -WordPress
 - -Joomla
- Started in early 2013
- Started with a particular group of people abusing it
- Now it is an easy way to build a botnet and other groups abuse it as well

Economics considerations

How much does an attack really cost? How much does the attacker pay per system? Consider lack of other illegal activities profits

The life of a drone

- Financials related
- Spam related

DDoS

How about IoT?

- Cost of ownership is low
- No financial gain (at this point)

Who is the adversary?

Wide range of attackers

Gamers – on the rise!!! ©

Professional DDoS operators and booters/stressors

Nation states

Hacktivists – not recently

...and more

Motivation

Wide range of motivating factors as well

Financial gain

Extortion (Stealth Ravens/DD4BC/Armada Collective/copy cats)

Taking the competition offline during high-gain events

(online betting, Superbowl, etc).

Political statement

Divert attention (seen in cases with data exfiltration)

Immature behavior

Skill level

Wide range of skills:

- Depending on the role in the underground community
- Mostly segmented between operators and tool smiths
- Tool-smiths are not that sophisticated (at this point) and there is a large reuse of code and services
- This leads to clear signatures for some of the tools

Increasing complexity:

- DirtJumper
- xnote.1
- XOR Botnet
- Mirai

What is new(-ish)?

- Booters/Stressors (3 years)
- Embedded home and SOHO devices (3-4 years), Mirai added a new spin to it
- Content management systems (5 years)

Booters/Stressors

- Inexpensive
- Tools are sold for cheap on the black market (forums)
- Range 5-10 Gbps and up to 40GBps

-over the past years there were mentions of 80GBps (but not conclusive)

- Usually short duration
- Popular among gamers

• A picture is worth a thousand words:

-Think about the audience they are trying to attract

• Google: "Gwapo's Professional DDOS"

Home routers

Embedded home and SOHO devices

- -Default username/password
- -Open DNS recursive resolvers
- -NetUSB bug
- -Network diagnostic tools
- -Some do not allow the user to turn off DNS
- XBOX and Sony attacks over Christmas (2014)
 - –Krebs on security:

http://krebsonsecurity.com/2015/01/lizard-stresser-runs-on-hacked-home-routers/

• Is that intentional?

Technology and Terminology Overview

Technology Overview

The purpose of this section is to level set

Topics we'll cover

- OSI and Internet models
- TCP and sockets
- DNS operation and terminology
- NTP, SNMP, SSDP operation
- Some terminology and metrics

Network Layers

OSI – Open Systems Interconnect

Physical and Data-link Layers (L1 and L2)

Aka: Network Access Layer

Physical Media changes that carry information: voltage, phase Line coding: Manchester, NRZ, NRZ-I Data unit: bit

Data-link

Data unit: frame (organizes bits in a frame) Provides physical addressing on a local network segment Separate in two: Media Access Control Layer (MAC): 802.3, 802.4, 802.5, 802.11abe

Logical-link Control: 802.2

Network Layer (layer 3)

Aka Internet Layer

Provides transport of data units between two points in the network Provides logical (and global) addressing of machines in the network Data unit: Packet Examples: Internet Protocol (IP) Does not guarantee delivery Allows for fragmentation

Transport Layer (layer 4)

Aka Transport (hey, this one matches the Internet model!) ©

Provides logical connection between applications Provides addressing of applications on a single system (via port numbers)

Data unit: segment

In some modalities like TCP provides virtual circuit and ensures data ordering and no loss of packets Typical for TCP is the 3-way handshake Examples: TCP, UDP

Session Layer (layer 5)

Part of the Internet model Application layer

Managing sessions between application (think state, like authentication) Examples: HTTP, SMTP, NetBIOS Addressing: some protocols provide logical endpoint

Presentation Layer (layer 6)

Part of the Internet model Application layer

Provides uniform data representation across multiple architectures and platforms Examples: images, file encryption

Application Layer (layer 7)

This is where the application lives

Part of the Internet model Application layer

Questions?

Attack surface

Network Layers – OSI vs Internet Model

Physical and Data-link Layers

- Cut cables
- Jamming
- Power surge
- EMP
- MAC SpoofingMAC flood

Network Layer

- Floods (ICMP)
- •Teardrop (overlapping IP segments)

Transport Layer

- •SYN Flood
- RST Flood
- FIN Flood
- •You name it...
- Window size 0 (looks like Slowloris)
- Connect attack
- •LAND (same IP as src/dst)

Session Layer

- Slowloris
- Sending data to a port with no NL in it (long headers, long request lines)
- Send data to the server with no CR

Presentation Layer

- Expensive queries (repeated many times)
- XML Attacks <!DOCTYPE lolz [<!ENTITY lol1 "&lol2;"> <!ENTITY lol2 "&lol1;">]> <lolz>&lol1;</lolz>

Application Layer

Depends on the application

•Black fax

Attack summary by layer

Questions?

Transmission Control Protocol (TCP) and sockets

Introduction to TCP

- Provides end-to-end virtual circuit
- Manages data loss detection and retransmission
- Deals with datagram ordering

RFC: 793 / September 1981 TRANSMISSION CONTROL PROTOCOL

Socket is an abstraction allowing an application to bind to a transport layer address (aka network port)

It is described by a state machine

Throughout its life time it goes through a number of states

Here are some of the socket states of importance:

CLOSED – start state LISTEN – waiting for a connection request SYN_SENT – initiated a connection SYN_RECV – received request still negotiating ESTABLISHED – connection working OK CLOSE_WAIT – waiting for the application to wrap up FIN-WAIT1/2, CLOSING, LAST_ACK – one side closed the connection TIME-WAIT – waiting for 2 x MSL

Diagram

Opening a TCP connection

Let's review the sequence for opening a connection

- Server side opens a port by changing to LISTEN state
- Client sends a SYN packet and changes state to SYN_SENT
- Server responds with SYN/ACK and changes state to SYN_RECV. For the client this is ESTABLISHED connection
- Client has to ACK and this completes the handshake for the server
- Packet exchange continues; both parties are in ESTABLISHED state

Closing a TCP connection

Sequence for closing a connection

- Both parties are in ESTABLISHED state
- One side initiates closing by sending a FIN packet and changes state to FIN_WAIT1; this changes the other side to CLOSE_WAIT
- It responds with ACK and this closes one side of the connection
- We are observing a half closed connection
- The other side closes the connection by sending FIN
- And the first side ACKs
- The first side goes into a wait for 2 times the MSL time (by default 60 seconds)

Use of netstat for troubleshooting

[root@knight ghost]# netstat -nap | grep 12345 tcp 0 0 0.0.0.0:12345 0.0.0.0:* LISTEN 2903/nc [root@knight ghost]# netstat -nap | grep 12345 tcp 0 0 127.0.0.1:12345 127.0.0.1:49188 **ESTABLISHED** 2903/nc [root@knight ghost]# netstat -nap | grep 12345 0 127.0.0.1:49188 127.0.0.1:12345 TIME_WAIT tcp 0 [root@knight ghost]# netstat -nap | grep 12345 [root@knight ghost]#

Attack types and terminology

Attack classification classifications

(pun intended) ;)

- By volume
 - -Volumetric
 - -Logic/Application
- Symmetry
 - -Asymmetric
 - -Symmetric
- Direction
 - -Direct
 - -Reflected

- Source
 - Single source
 - Distributed
- State change
 - Permanent
 - Recoverable

Based on network layer

Important metrics and what to report

- –Bandwidth (Kbps, Gbps)
- -Latency
- -PPS
- –QPS
- -Storage
- -CPU
- -Application specific usually latency
- -Protocol

Attack type details

SYN Flood

What is a SYN flood?

What is a 3-way handshake?

SYN flood

- Exploits the limited slots for pending connections
- Overloads them

SYN flood through the eyes of netstat

netstat -- anp

Active Internet connections (servers and established)										
Proto	Recv	-Q Send-Q Local Addre	ss Foreign A	Address State PID/Program name						
tcp	0	0 0.0.0.0:111	0.0.0.0:*	LISTEN 1339/rpcbind						
tcp	0	0 0.0.0.0:33586	0.0.0.0:*	LISTEN 1395/rpc.statd						
tcp	0	0 192.168.122.1:53	0.0.0.:*	LISTEN 1962/dnsmasq						
tcp	0	0 127.0.0.1:631	0.0.0.:*	LISTEN 1586/cupsd						
tcp	0	0 127.0.0.1:25	0.0.0.:*	LISTEN 2703/sendmail: acce						
tcp	0	0 127.0.0.1:25	127.0.0.1:49718	SYN_RECV -						
tcp	0	0 127.0.0.1:25	127.0.0.1:49717	SYN_RECV -						
tcp	0	0 127.0.0.1:25	127.0.0.1:49722	SYN_RECV -						
tcp	0	0 127.0.0.1:25	127.0.0.1:49720	SYN_RECV -						
tcp	0	0 127.0.0.1:25	127.0.0.1:49719	SYN_RECV -						
tcp	0	0 127.0.0.1:25	127.0.0.1:49721	SYN_RECV -						
tcp	0	0 127.0.0.1:25	127.0.0.1:49716	SYN_RECV -						

SYN on the wire

42 20.257541006 52.130.150.254 127.0.0.1 TCP 56 46036 > http [SYN] 43 20.257563006 78.94.151.254 127.0.0.1 TCP 56 49654 > http [SYN] 44 20.257574006 120.165.150.254 127.0.0.1 TCP 56 21280 > http [SYN]
Frame 42: 56 bytes on wire (448 bits), 56 bytes captured (448 bits) on interface 0
↓Linux cooked capture /Internet Protocol Version 4, Src: 52.130.150.254 <mark>(52.130.150.254)</mark> , Dst: <mark>127.0.0.1</mark> (127.0.0.1)
Version: 4
Header length: 20 bytes
▶ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Tran
Total Length: 40
Identification: 0xd701 (55041)
► Flags: 0x00
Fragment offset: 0 Time to live: 255
Protocol: TCP (6)
▶Header checksum: 0x9a4c [validation disabled]
Source: 52.130.150.254 (52.130.150.254)
Destination: 127.0.0.1 (127.0.0.1)
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
rTransmission Control Protocol, Src Port: 46036 <mark>(46036)</mark> , Dst Port: http <mark>(80)</mark> , Seq: 0, Len: 0 Source port: 46036 (46036)
Destination port: http (80)
[Stream index: 35]
Sequence number: 0 (relative sequence number)
Header length: 20 bytes
▶ <mark>Flags: 0x002 (SYN)</mark>
Window size value: 65535
[Calculated window size: 65535]
▶ Checksum: 0xb9c2 [validation disabled]
ANOG 69: DDoS Tutorial

Attacker Random IP address/ port

Target 127.0.0.1:80

Pay attention to the SYN flag!

SYN flood mitigation

- Technology
- SYN Cookies
- Whitelists
- TCP Proxy (TCP Intercept active mode)
- TCP Resets (TCP Intercept passive)
- Nowadays volumetric

What is a SYN cookie?

Hiding information in ISN (initial sequence number)

SYN Cookie:

Timestamp % 32 + MSS + 24-bit hash

Components of 24-bit hash: server IP address server port number client IP address client port timestamp >> 6 (64 sec resolution)

Enabling SYN-cookies

To enable SYN cookies:

echo 1 > /proc/sys/net/ipv4/tcp_syncookies

- All TCP related settings are located in /proc/sys/net/ ipv4/
 - tcp_max_syn_backlog
 - tcp_synack_retries
 - tcp_syn_retries

Socket Exhaustion

Socket Exhaustion

What is a socket?

What is Maximum Segment Lifetime (MSL)? How old is the Internet? What is Time To Live (TTL) measured in?

What is socket exhaustion?

Socket Exhaustion observed via netstat

Socket exhaustion would look like this:

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address			ss Foreign /	Address	State PID/Program name
tcp	0	0 0.0.0.0:111	0.0.0.0:*	LISTEN	1339/rpcbind
tcp	0	0 0.0.0.0:33586	0.0.0.:*	LISTEN	1395/rpc.statd
tcp	0	0 192.168.122.1:53	0.0.0.0:*	LISTEN	1962/dnsmasq
tcp	0	0 127.0.0.1:631	0.0.0:*	LISTEN	1586/cupsd
tcp	0	0 127.0.0.1:25	0.0.0.0:*	LISTEN	2703/sendmail: acce
tcp	0	0 0.0.0.0:1241	0.0.0.0:*	LISTEN	1851/nessusd: waiti
tcp	0	0 127.0.0.1:25	127.0.0.1:60365	TIME	_WAIT -
tcp	0	0 127.0.0.1:25	127.0.0.1:60240	TIME	_WAIT -
tcp	0	0 127.0.0.1:25	127.0.0.1:60861	TIME	_WAIT -
tcp	0	0 127.0.0.1:25	127.0.0.1:60483	TIME	_WAIT -
tcp	0	0 127.0.0.1:25	127.0.0.1:60265	TIME	_WAIT -
tcp	0	0 127.0.0.1:25	127.0.0.1:60618	TIME	_WAIT -
tcp	0	0 127.0.0.1:25	127.0.0.1:60407	TIME	_WAIT -
tcp	0	0 127.0.0.1:25	127.0.0.1:60423	TIME	_WAIT -
tcp	0	0 127.0.0.1:25	127.0.0.1:60211	TIME	_WAIT -
tcp	0	0 127.0.0.1:25	127.0.0.1:60467	TIME	_WAIT -
tcp	0	0 127.0.0.1:25	127.0.0.1:60213	TIME	_WAIT -

How to enable socket reuse (IoT issue)

How to determine

cat /proc/sys/net/ipv4/tcp_fin_timeout sysctl net.ipv4.tcp_fin_timeout

Enable socket reuse

echo 1 > /proc/sys/net/ipv4/tcp_tw_recycle

echo 1 > /proc/sys/net/ipv4/tcp_tw_reuse

Slowloris

Connection handling architectures

Process based connection handling?

Think "Apache"

Event based connection handling?

Think "nginx"

Process oriented explained

- Listener opens sockets
- New connection comes in
- Process forks; separate process handles the connection
- New connection comes in
- Process forks; separate process handles the connection
- ...and so on...
- ...usually with up to 500-600 concurrent process copies

Apache web server (simplified)

- Few child processes listen on a socket
- A new connection comes in...
- ...and one of them takes it
- Another new connection comes in...
- ...and the next one takes it.
- Pool is exhausted; new processes are spawned (forked)
- ...and so on...
- Up to about 500-600
- The initial set is defined by StartServers

Nginx (simplified)

- Master Process controls
 logistics
- Support processes (cache management)
- Worker processes process connections
- One or more...
 - ...one per core
- Each worker can handle many sockets concurrently
- A new connection comes in ...and is established; no

dup()

• ...and so on...

• Exploits the process based model but opening a number of concurrent connections and holds them open for as long as possible with the least amount of bandwidth possible

Slowloris request

```
Request:
send: GET /pki/crl/products/WinPCA.crl HTTP/1.1
wait...
send: Cache-Control: max-age = 900
wait...
send: Connection: Keep-Alive
wait...
send: Accept: */*
wait...
send: If-Modified-Since: Thu, 06 Aug 2015 05:00:26 GMT
wait...
send: User-Agent: Microsoft-CryptoAPI/6.1
wait...
send: Host: crl.microsoft.com
```

Slowloris illustrated

- The client opens a connection and sends a request...
- ...then another...
- ...and another...
- ...and so on.
- ...and waits some time...
- ...and sends the next header
- ...and so for each connection
- ...and so on...

•Change of the software architecture

•Use of event driven reverse proxy to protect the server (like nginx)

Dedicated hardware devices

Questions?

Reflection and amplification attacks

- Reflection using an intermediary to deliver the attack traffic
- Amplification ability to deliver larger response than the trigger traffic

Reflection

Reflective attacks

- Attacks where the an unwilling intermediary is used to deliver the attack traffic
- The attacker would normally send a packet with a forged source IP address to the intermediary. The forget address is going to be the one of the target. The intermediary will deliver a response which will go to the target instead of the attacker

Note to audience: think what protocols we can use for that?

What is reflection(ed) attack

Attacks where the an unwilling intermediary is used to deliver the attack traffic

Attacker sends a packet with a spoofed source IP set to the victim's Reflectors respond to the victim

The ones that are of interest are:

- •DNS
- •NTP
- •SSDP
- •SNMP

•RPC (reported lately but not really large)

Amplification

What is amplification attack?

 Asymmetric attack where response is much larger than the original query

The ones that are of interest and provide amplifications are:

- •DNS
- •SSDP
- •NTP
- •SNMP

Amplification factors:

https://www.us-cert.gov/ncas/alerts/TA14-017A

Amplification quotients

Protocol	Bandwidth Amplification Factor	Vulnerable Command
DNS	28 to 54	Multiple
NTP	556.9	Multiple
SNMPv2	6.3	GetBulk request
NetBIOS	3.8	Name resolution
SSDP	30.8	SEARCH request
CharGEN	358.8	Character generation request
QOTD	140.3	Quote request
BitTorrent	3.8	File search
Kad	16.3	Peer list exchange
Quake Network Protocol	63.9	Server info exchange
Steam Protocol	5.5	Server info exchange

Source: US-CERT: https://www.us-cert.gov/ncas/alerts/TA14-017A

Questions?

DNS Resolution

DNS server types

• Authoritative

The source of truth for a particular domain name Example: Root DNS servers, .com DNS server, .google.com DNS server, etc.

Recursive

Service endpoints; optimize the DNS queries Example: corporate DNS server, home router DNS server

DNS resolution

DNS resolution at the packet level

• The process of mapping: www.fastly.com => 151.101.117.57

...if the answer was cached

DNS Reflection

What is DNS reflection attack?

• What happens if an attacker forges the victim address as its source?

... and what if hundreds of misconfigured open DNS resolvers are used?

Consider this query

- Triggered by something like:
- dig ANY isc.org @3.3.3.3
- Example:~\$ dig ANY isc.org @172.20.1.1 # My home lab
- Flip over for answer

Consider this (cont'd)

ghostwood@sgw:~\$ dig ANY isc.org @172.20.1.1

;; ANSWER SECTION:

isc.org. 481 IN RRSIG DS 7 2 86400 20130607155725 20130517145725 42353 org. KHMs09DaFMx416/7xXhaD9By0NrqCiQ4kBnqi6oq2VocZRREAbUHHrAY KydlgKO5vOaw6l1Fy86/oiODkk3yyHspciwdJvjlefu4PktdUnd1lQxW 791q/jWgHBL5iQQigBYv7Z5lfY1ENn+6fPOchAywWqEBYcdqW8pzzOjz zlU=

isc.org. 481 IN DS 12892 5 2 F1E184C0E1D615D20EB3C223ACED3B03C773DD952D5F0EB5C777586D E18DA6B5

isc.org. 481 IN DS 12892 5 1 982113D08B4C6A1D9F6AEE1E2237AEF69F3F9759

isc.org. 5725 IN RRSIG A 5 2 7200 20130620134150 20130521134150 50012 isc.org. iCBy1Jj9P6mXVYjaSc62JClrZW+hvYAUGHo7WwRmxGRaipS8I9+LCvRI 2erglomkBP79m9ahnF0xWEAaueA6TIHClGxOkgrk3hBtMFjUB9rhvkIm uxO2D8gc1DJDLl5egfpJCF2fITFhEvWzeMt6QGNwicWMxBsFHCxM7Fms D8I=

isc.org. 5725 IN A 149.20.64.42

isc.org. 5725 IN RRSIG DNSKEY 5 2 7200 20130620130130 20130521130130 12892 isc.org. dfxTGA/f6vdhulqojp+Konkdt8c4y3WiU+Vs5TjznvhdEyH14qPh/cHh +y1vA6+gAwTHI4X+GpzctNxiElwaSwVu3m9NocniwI/AZQoL/SyDgEsI bJM/X+ZXY5qrgQrV2grOcKAAA91Bus3behYQZTsdaH2TStAKjKINEgvm yQ5xWEo6zE3p0ygtPq4eMNO4fRT9UQDhTRD3v3ztxFINXKvBsQWZGBH0 5tQcbC6xnGyn1bBptJEEGhCBG01ncJt1MCyEf98VGHKJFeowORiirDQ3 cjJRFPTCCkA8n4j8vnsimIUP/TGI+Mg4ufAZpE96jJnvFBsdcC/iOo6i XkQVIA==

isc.org. 5725 IN RRSIG DNSKEY 5 2 7200 20130620130130 20130521130130 50012 isc.org. o18F3KIFkYedFRw1e5MP4qDo3wSg0XK9l5WCYD75aGhs9Rl5eyc/ 6KEW Se4IZXRhf6d77xXlerMYCrsfh/GHdjPRoE1xL/nzH/hTBJAI9XDbC5I/ EUpFIGVLVdQy43XKtywm0j2nyc5MdGa2VeLKo+hHTmH3St3pGRVJp2IK 5Z0=

isc.org. 5725 IN DNSKEY 257 3 5 BEAAAAOhHQDBrhQbtphgq2wQUpEQ5t4DtUHxoMVFu2hWLDMvoOMRXjGr hhCeFvAZih7yJHf8ZGfW6hd38hXG/ xyIYCO6Krpbdojwx8YMXLA5/kA+ u50WIL8ZR1R6KTbsYVMf/Qx5RiNbPClw+vT+U8eXEJmO20jIS1ULgqy3 47cBB1zMnnz/4LJpA0da9CbKj3A254T515sNIMcwsB8/2+2E63/ zZrQz Bkj0BrN/9Bexjpiks3jRhZatEsXn3dTy47R09Uix5WcJt+xzqZ7+ysyL KOOedS39Z7SDmsn2eA0FKtQpwA6LXeG2w+jxmw3oA8IVUgEf/rzeC/bB yBNsO70aEFTd isc.org. 5725 IN DNSKEY 256 3 5 BQEAAAABwuHz9Cem0BJ0JQTO7C/a3McR6hMaufljs1dfG/inaJpYv7vH XTrAOm/MeKp+/ x6eT4QLru0KoZkvZJnqTl8JyaFTw2OM/ltBfh/hL2Im Cft2O7n3MfeqYtvjPnY7dWghYW4sVfH7VVEGm958o9nfi79532Qeklxh x8pXWdeAaRU=

a.root-servers.net.	297269 IN	A 198.41.0.4
a.root-servers.net.	415890 IN	AAAA 2001:503:ba3e::2:30
b.root-servers.net.	298007 IN	A 192.228.79.201
c.root-servers.net.	297373 IN	A 192.33.4.12
d.root-servers.net.	297555 IN	A 199.7.91.13
d.root-servers.net.	417805 IN	AAAA 2001:500:2d::d
e.root-servers.net.	297707 IN	A 192.203.230.10
f.root-servers.net.	297544 IN	A 192.5.5.241
f root-servers net	416152 IN	ΔΔΔΔ 2001·500·2f··f

Reflection and Amplification

On the wire

127.5.5.5 A	ttack 127.0.0.1	DNS	70 Standard query 0x4918 A test.com
127.5.5.5 tr	affic 127.0.0.1	DNS	70 Standard query 0x4918 A test.com
127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
127.0.0.1 Re		DNS	153 Standard query response 0x4918 A 192.
127.5.5.5 Ta	arget 127.0.0.1	ICMP	181 Destination unreachable (Port unreachal

- Victim is 127.5.5.5
- Attacker spoofs traffic as if it comes from 127.5.5.5
- Reflector (127.0.0.1) responds to the query to the victim

• BACK SCATTER

Notice the victim is responding with port unreachable because there is nothing running on that UDP port. This is called backscatter

On the wire (details)

	GOLGIO/		
35820 128.14790100 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
35821 128.14790800 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
35822 128.14791500 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
35823 128.14794100 127.0.0.1	127.5.5.5	DNS	153 Standard query response 0x4918 A 192.
35824 128.14794400 127.5.5.5	127.0.0.1	ICMP	181 Destination unreachable (Port unreacha
▶ Frame 35820: 70 bytes on wire (560	bits). 70 bytes capture	ed (560 bits) o	n interface 0
▶Linux cooked capture		,,	
▶ Internet Protocol Version 4, Src:	127.5.5.5 (127.5.5.5), [st: 127.0.0.1	(127.0.0.1)
▶User Datagram Protocol, Src Port:			
▼Domain Name System (query)			
Transaction ID: 0x4918			
▶Flags: 0x0100 Standard query			F
Questions: 1	 Victim is 	127.5.5	.5
Answer RRs: 0	• • • • •	~~~~~	
Authority RRs: 0	 Attack tra 	attic tror	n 127.5.5.5; port
Additional RRs: 0			
▼Queries	49249		
▼test.com: type A, class IN	40240		
Name: test.com	To roflood	or 107	0.0.1, port 52
Type: A (Host address)		01121	0.0.1; port 53
Class: IN (0x0001)			-

On the wire (details)

	Jucians	/	
35820 128.14790100 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
35821 128.14790800 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
35822 128.14791500 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
35823 128.14794100 127.0.0.1	127.5.5.5	DNS	153 Standard query response 0x4918 A 192
35824 128.14794400 127.5.5.5	127.0.0.1	ICMP	181 Destination unreachable (Port unreach
▶User Datagram Protocol, Src Port:	domain (53), Dst Port:	24058 (24058)	
▼Domain Name System (response)			
[Request In: 34402]			
[Time: 0.017424000 seconds]			
Transaction ID: 0x4918		_	
▶ Flags: 0x8580 Standard query resp	onse, No error 🛛 🕒	Reflecto	or (127.0.0.1) responds
Questions: 1	•		
Answer RRs: 1	+	a tha a	uery to the victim
Authority RRs: 1	L	o ine qi	
Additional RRs: 2	(
▼ Queries		127.5.5	.5)
▼test.com: type A, class IN	· · · · · · · · · · · · · · · · · · ·		/
Name: test.com			
Type: A (Host address)			
Class: IN (0x0001)		lata the	e number of records ir
♦ test.com: type A, class IN, add	102 169 1 1		
▼Authoritative nameservers			
♦ test.com: type NS, class IN, ns	localbost	he ansv	Ner
▼Additional records			
▶localhost: type A, class IN, add	Ir 127.0.0.1		
<pre>> localhost: type AAAA, class IN, dat</pre>			
, cocachoser cype ready access int			

Cache busting

DNS resolution (rehash)

- Let's focus on the number of requests per second
- User talks to recursive resolver, which:
 - -Caches answers
 - -Answers a large number of requests
- The recursive talks to different level of authoritative servers, which:
 - Do not cache answers (they are auths)Relatively lower number of queries
- Consider caching and authoritative capacity

What is cache busting?

Attacker sends a query to recursive/reflector Recursive forwards the query

And so on...

Imagine one more recursive resolver Rinse and repeat...

Questions?

Large scale mitigation and load distribution: Anycast

- Multiple points of presence advertise the same address space
- Network ensures user is routed to the "closest" instance

Network Time Protocol (NTP)

NTP reflection attack

Stratum serversNTP queries

• MONLIST command –provides a list of clients that have time readings

NTP server configuration

Access lists

NTP authentication

Disable the MONLIST command

Useful hints: <u>http://www.team-cymru.org/secure-ntp-template.html</u>

List of open NTP reflectors: <u>http://openntpproject.org/</u>

Simple Network Management Protocol (SNMP)

- Different researchers claim amplification factors larger than the ones provided by NTP
- Tools floating in the wild
- Amplification 6 times according to US-CERT

Simple Service Discovery Protocol (SSDP)

Spoofed MSEARCH query with the source of the victim

•Amplification is up to 30 times (US-CERT)

Reflection attacks summary and resources

• Summary

-Protocols that allow spoofing of the source of a query

–Protocols that provide amplification – the query is much smaller than the response

- •SSDP: http://openssdpproject.org/
- DNS: http://openresolverproject.org/
- •NTP: <u>http://openntpproject.org/</u>

Questions?

Thank you!

krassi@fastly.com

Mitigation

Risk Pyramid

- How much does a minute of outage cost to your business?
- Are there other costs associated with it? Reputation?
- Are you in a risk category?
- How much is executive management willing to spend to stay up?
- Are there reasons you need to mitigate on-site vs offsite? Latency?

On-site / DIY

- Bandwidth
- Equipment
- Qualified personnel
- More expensive overall but cheaper per MB
- Need for a backup plan

On Premise DDoS Mitigation

Outsource / scrubbing center

- Limited protocol support (usually HTTP/S)
- Added latency
- May loose visibility to source IP of the client
- Pay per MB of clean traffic (usually)
- Fast setup/Lower overhead
- More expensive per MB

Always On DDoS Mitigation

Questions?

Thank you!

krassi@fastly.com

Good Internet citizenship

Mitigations

- Defend yourself
 - -Anycast
 - -Some form of IPS/DDoS mitigation gear
 - -Overall network architecture
- Defend the Internet
 - -Rate-limiting
 - -BCP38/140 (outbound filtering) source address validation
 - -Securely configured DNS, NTP and SNMP servers
 - -No open resolvers
- Talk to the professionals

Are you noticing the imbalance?

•Defend yourself

Anycast (DNS) Some form of IPS/DDoS mitigation gear

Defend the Internet

Rate-limiting BCP38/140 (outbound filtering) source address validation Securely configured authoritative DNS servers No open resolvers

• Lots of money

Somewhat cheap

What's the point I'm trying to make?

- It's not feasible to mitigate those attacks single handedly
- We need cooperation
- Companies need to start including "defending the Internet from themselves" as a part of their budget – not only "defending themselves from the Internet"

What can I do about it?

- RFC 2827/BCP 38 Paul Ferguson
- If possible filter all outgoing traffic and use proxy

uRPF

- BCP 140: "Preventing Use of Recursive Nameservers in Reflector Attacks"
- http://tools.ietf.org/html/bcp140
- Aka RFC 5358

Resources

•DNS

http://openresolverproject.org/

- NTP <u>http://openntpproject.org/</u>
- If you see your IP space in the lists provided by those sites – resolve it

- Discuss what DDoS is, general concepts, adversaries, etc.
- Went through a networking technology overview, in particular the OSI layers, sockets and their states, tools to inquire system state or capture and review network traffic
- Dove into specifics what attack surface the different layers offer
- Discussed different attack types
- Terminology
- Tools

Thank you!

krassi@fastly.com