
INTRODUCING
PANOPTES: A PYTHONIC

NETWORK TELEMETRY
PLATFORM

Varun Varma, Principal Software Engineer
Matt Hudgins, Senior Software Engineer

{vvarun, mhudgins} @ yahoo-inc.com

2

WTF IS PANOPTES?

•  Panoptes is our greenfield network telemetry platform that provides real
time telemetry to Yahoo employees

•  Yahoo’s production network consists of tens of thousands of multi-vendor
network devices

•  Easily accessible network telemetry enables powerful alerting, remediation
and anomaly detection tools

3

IN THE BEGINNING

•  Legacy Yahoo monitoring tools

suffered from:

•  Overpolling
•  Data balkanization
•  SNMP dependence

4

DESIGN GOALS

•  Extensible – Minimize the effort required to poll new metrics or device types
•  Scalable –Easily scale horizontally to meet new polling demands
•  Consumable – Provide clean and understandable RESTful APIs for internal developers

5

ARCHITECTURE

•  Panoptes consists of highly available discovery, polling and
persistence layers

•  The platform’s primary abstractions are Python plugins and
consumers

•  Plugin modules enumerate devices and poll telemetry

•  Consumer processes read polled data and load it into a configured
data store

6

10,000 FOOT VIEW

EXTRACT

LOAD

TRANSFORM

DC

Yahoo Production Network Datacenter

DC

DC POP

POP

DC

Polling

Persistence

DC POP

7

POLLING LAYER

•  Panoptes polling plugins are Python modules that
target specific device types and define what metrics to
poll and how to poll them

•  Worker hosts fetch tasks from Celery, an asynchronous
task queue

•  A Python process on the worker host executes the task
and places the resultant Panoptes Metrics Group onto
Kafka

Python

Celery Yapsy

Zookeeper

Kafka

Polling Host

Services Host

Redis

8

POLLING SCHEDULING

Make: Foo
Model: Pingmaster 1000
Method: SNMP

1.  Device Discovery
•  Polling hosts call internal services to enumerate

devices
•  We cache discovered hosts for seven days to

avoid service disruptions
2.  Polling Plugin Matching

•  For each device discovered, try to find a
matching polling plugin

3.  Polling Plugin Scheduling
•  Place the polling plugin task on the queue for

execution by the polling hosts
•  The polling host fetches a task to execute from

the queue

.py

.py

Make: Bar
Model: Big Ass Router
Method: SNMP

Make: Baz
Model: VIPinator
Method: REST API .py

Example polling plugins

9

POLLING PLUGIN EXECUTION

Celery Poller A

Poller B

Kafka Poller C

 SNMP GET FETCH

Polling Tasks

Metrics Group

 Network
Devices

 PRODUCE

 HTTP GET

 PRODUCE

US West Datacenter

10

WHAT WE POLL

Element Description Example
Dimension Dimensions are categories

expressed as strings
bgp_adjacency_local_address

Dimension Value Dimension values are explicit
criteria

“1.1.1.1”

Metric Counter Non-negative integers which
monotonically increase until
they wrap around (odometer)

interface_packets_sent

Metric Gauge A point in time measurement
that may increase or decrease
(speedometer)

interface_packets_sent_rate

11

CONFIGURATION DRIVEN SNMP POLLING
•  Poll new metrics without having to write new functions

•  An engineer specifies a Python dictionary with target OID(s) and how it maps to the
resultant metrics group set:

{
 'oid': jnxBgpM2PeerEntry + '.7',
 'name': 'bgp_adjacency_local_address',
 'transform': 'ip',
 'type': 'dimension'
}

•  A common library evaluates this data structure, issues the appropriate queries and emits a
Panoptes metrics group

12

AFTER POLLING

•  Kafka is the heart of our data distribution layer

•  We do counter to gauge conversion and write back
to Kafka

•  A group of processes consume metrics from Kafka
and writes the last point in time data to MySQL

•  Another group of processes consume metrics and
sends them to our centralized telemetry store

Polling Layer

Kafka Bus

Central Store MySQL

13

AFTER POLLING

Kafka Consumer
Process A

Consumer
Process B

CONSUME

Central
Telemetry
REST API

MySQL

POST

WRITE

Future
Consumer Druid

Metrics Group

US WEST DC

US EAST DC

14

API EXAMPLE

15

LOAD BALANCER VIEWER

•  Responsive Angular 2 application
built from the in-colo MySQL
telemetry data

•  Used by support teams company
wide to answer questions like:

•  What are the active connections on
a given load balancer?

•  What is the overall health of the
IPv4/IPv6 real?

•  What load balancers are in service
for a given Yahoo! property?

16

CENTRALIZED TELEMETRY SERVICE

•  We push metrics to Yahoo’s in-house
time series database and alerting
service (centralized telemetry)

•  Custom dashboard service our user
base is familiar with

•  Economies of scale – no need to
provision new hardware or software

Here we see control and data plane CPU statistics for a load balancer in
one of our West Coast data centers.

17

FEDERATED API
•  Due to availability concerns, each site has its

own MySQL cluster

•  Telemetry data must be available during a
network partition

•  Centralized telemetry store might not be
reachable in all cases

•  Each API endpoint acts as a tribe node

•  If a tribe node doesn’t have the requested
data, it returns a pointer to the node that does
through a find API

DC0

DC1

DC2

DC3

DC4

DC5

DC6

DC7

18

CURRENT STATUS

•  Deployed in all our production data centers across five continents

•  Panoptes polls, processes and stores millions of metrics per minute from production load
balancers and BGP speaking routers

•  All Yahoo service owners use Panoptes-collected load balancer telemetry for troubleshooting
and capacity planning

19

LESSONS LEARNED

•  Python is fun to write, but painfully slow in some cases; luckily, C
interactions are easy

•  Creating a functional testbed requires a significant upfront investment

•  RESTful APIs: if you build it, they will come

20

FUTURE

•  Data availability is the prerequisite for more advanced use cases:
•  Anomaly detection
•  Machine learning
•  Auto-remediation

•  Streaming telemetry
•  Poll the rack switch layer – 10x increase in the number of polled devices
•  This project wouldn’t exist without OSS: Python, Kafka, Linux…to name a

few
•  Leadership mandate to open source Panoptes

21

SHOUT-OUTS

•  We would like to thank some of our colleagues for their
ideas, support, motivation and work:

•  Ian Flint
•  Sean Wade
•  Stormy Adams
•  Sutha Thangavel
•  Malcolm Flint
•  Jessica Tang
•  Vivek AM

22

QUESTIONS?

