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WTF IS PANOPTES? 
 

•  Panoptes is our greenfield network telemetry platform that provides real 
time telemetry to Yahoo employees 

•  Yahoo’s production network consists of tens of thousands of multi-vendor 
network devices 

•  Easily accessible network telemetry enables powerful alerting, remediation 
and anomaly detection tools  
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IN THE BEGINNING 

•  Legacy Yahoo monitoring tools 

suffered from: 

•  Overpolling  
•  Data balkanization  
•  SNMP dependence  
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DESIGN GOALS  
 
•  Extensible – Minimize the effort required to poll new metrics or device types  
•  Scalable –Easily scale horizontally to meet new polling demands  
•  Consumable – Provide clean and understandable RESTful APIs for internal developers  
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ARCHITECTURE 

•  Panoptes consists of highly available discovery, polling and 
persistence layers  

•  The platform’s primary abstractions are Python plugins and 
consumers  

•  Plugin modules enumerate devices and poll telemetry 

•  Consumer processes read polled data and load it into a configured 
data store 
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POLLING LAYER 

•  Panoptes polling plugins are Python modules that 
target specific device types and define what metrics to 
poll and how to poll them 

•  Worker hosts fetch tasks from Celery, an asynchronous 
task queue 

•  A Python process on the worker host executes the task 
and places the resultant Panoptes Metrics Group onto 
Kafka  

Python 

Celery Yapsy

Zookeeper  

Kafka  

Polling Host  

Services Host  

Redis  
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POLLING SCHEDULING 

Make:       Foo 
Model:      Pingmaster 1000 
Method:    SNMP 

1.  Device Discovery 
•  Polling hosts call internal services to enumerate 

devices  
•  We cache discovered hosts for seven days to 

avoid service disruptions 
2.  Polling Plugin Matching 

•  For each device discovered, try to find a 
matching polling plugin 

3.  Polling Plugin Scheduling 
•  Place the polling plugin task on the queue for 

execution by the polling hosts  
•  The polling host fetches a task to execute from 

the queue 

.py 

.py 

Make:       Bar 
Model:      Big Ass Router 
Method:    SNMP 

Make:       Baz 
Model:      VIPinator  
Method:    REST API .py 

Example polling plugins  
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POLLING PLUGIN EXECUTION  

Celery Poller A

Poller B

Kafka Poller C

 SNMP GET  FETCH 
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Metrics Group 

 Network 
Devices
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 HTTP GET 

 PRODUCE 

US West Datacenter  



10 

WHAT WE POLL 

Element Description Example 
Dimension Dimensions are categories 

expressed as strings  
bgp_adjacency_local_address 

Dimension Value Dimension values are explicit 
criteria 

“1.1.1.1” 

Metric Counter  Non-negative integers which 
monotonically increase until 
they wrap around (odometer) 

interface_packets_sent 

Metric Gauge  A point in time measurement 
that may increase or decrease 
(speedometer)  

interface_packets_sent_rate 
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CONFIGURATION DRIVEN SNMP POLLING 
•  Poll new metrics without having to write new functions 

•  An engineer specifies a Python dictionary with target OID(s) and how it maps to the 
resultant metrics group set: 
 
{ 
    'oid': jnxBgpM2PeerEntry + '.7', 
    'name': 'bgp_adjacency_local_address', 
    'transform': 'ip', 
    'type': 'dimension' 
} 
 

•  A common library evaluates this data structure, issues the appropriate queries and emits a 
Panoptes metrics group 
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AFTER POLLING 

•  Kafka is the heart of our data distribution layer  

•  We do counter to gauge conversion and write back 
to Kafka 

•  A group of processes consume metrics from Kafka 
and writes the last point in time data to MySQL  

•  Another group of processes consume metrics and 
sends them to our centralized telemetry store  

Polling Layer

Kafka Bus

Central Store MySQL
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AFTER POLLING 
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API EXAMPLE 
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LOAD BALANCER VIEWER  

•  Responsive Angular 2 application 
built from the in-colo MySQL 
telemetry data  

•  Used by support teams company 
wide to answer questions like: 

•  What are the active connections on 
a given load balancer?  

•  What is the overall health of the 
IPv4/IPv6 real? 

•  What load balancers are in service 
for a given Yahoo! property?  
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CENTRALIZED TELEMETRY SERVICE   

•  We push metrics to Yahoo’s in-house 
time series database and alerting 
service (centralized telemetry) 

•  Custom dashboard service our user 
base is familiar with 

•  Economies of scale – no need to 
provision new hardware or software  

Here we see control and data plane CPU statistics for a load balancer in 
one of our West Coast data centers. 
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FEDERATED API 
•  Due to availability concerns, each site has its 

own MySQL cluster 

•  Telemetry data must be available during a 
network partition 

•  Centralized telemetry store might not be 
reachable in all cases  

•  Each API endpoint acts as a tribe node 

•  If a tribe node doesn’t have the requested 
data, it returns a pointer to the node that does 
through a find API 

DC0 

DC1 

DC2 

DC3 

DC4 

DC5 

DC6 

DC7 
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CURRENT STATUS  
  

•  Deployed in all our production data centers across five continents 

•  Panoptes polls, processes and stores millions of metrics per minute from production load 
balancers and BGP speaking routers 

•  All Yahoo service owners use Panoptes-collected load balancer telemetry for troubleshooting 
and capacity planning 
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LESSONS LEARNED   

•  Python is fun to write, but painfully slow in some cases; luckily, C 
interactions are easy 

•  Creating a functional testbed requires a significant upfront investment  

•  RESTful APIs: if you build it, they will come  
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FUTURE    

•  Data availability is the prerequisite for more advanced use cases:  
•  Anomaly detection  
•  Machine learning 
•  Auto-remediation   

•  Streaming telemetry 
•  Poll the rack switch layer – 10x increase in the number of polled devices  
•  This project wouldn’t exist without OSS: Python, Kafka, Linux…to name a 

few 
•  Leadership mandate to open source Panoptes  
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QUESTIONS? 
 


