
Akshat Sharma, TME, Web Solutions, Cisco.

October, 2016

Test your way to a better
Deployment!

2

Deployment and Operations: Current
Methodology

2

Purchase	 Installa.on	
	 (Truck	 Roll)	

Service	
Ac.va.on	

Network Deployment is pretty
Straightforward ….

Automated	 NetOps:	 	
ZTP,	 Config	 Mgmt….	

3

Deployment and Operations: Current
Methodology

3

Purchase	

Installa.on	
	 (Truck	 Roll)	

Service	
Ac.va.on	

…maybe a bit of Pre-staging…

NetOps:	 	
ZTP,	 Config	 Mgmt….	

Pre-‐Staging	

4

 … A bit of monitoring, some hands-on deck, more
truck-rolls when things go south…….

4

Purchase	

Installa.on	
	 (Truck	 Roll)	

Service	
Ac.va.on	

NetOps:	 	
ZTP,	 Config	
Mgmt….	

Pre-‐Staging	

5

 Ok, Network Deployment is complex!

•  Hence the need for Validation and Test Cycles.

•  These cycles must model real-life deployments
and variables.

•  Takes time – weeks… mostly months …

•  Considerable investment on testing hardware
and on good Testers/Developers.

6

Deconstructing Network
Test and Validation

7

Validation Cycle Requirements
Representative

Test Environments
Time and Cost

Constraints

Time:
Reduce months to
weeks

Cost:
•  Reduce man-hour

investment
•  Reduce CAP-EX

on Test hardware

DC DC

Core

Exhaustive
Automated Tests

•  Cover Test
Topographies /
Scenarios

•  Actions:
•  Functional
•  Negative

•  Validations

8

The problems at hand…
•  Vendor network protocol implementations are notoriously

difficult to test

•  Custom Vendor specific APIs

•  Lack of Models: No consensus on outputs/responses and
capabilities

•  Non-overlapping tool coverage : Ansible coming close to

multi-vendor support but no other alternative.

•  Cannot commit to one tool over the other. Test
Frameworks need to be modular.

9

Creating an open-source Test
Framework:

Our Journey

10

The 5 Commandments:

•  Workflow and Tool selection should never be bound by
architectures. Be Flexible.

•  Keep the stack modular and composable.

•  Re-use existing industry tools – Do NOT start from scratch
unless there is a gap.

•  Create a community to share test cases and extend libraries.

•  Stand on the shoulders of giants: Leverage work already
done by communities like opendaylight, fd.io etc.

11

Creating one piece at a time…

12

Topologies
A network is just an undirected graph. Nodes and Edges with certain
properties that form the connections.

DC DC

Core

13

Topologies
Define a schema, put it in YAML or JSON and run kwalify tests to verify
the input is valid.

Schema
schema;topology_metadata_map:
 type: map
 mapping:
 version:
 type: any
 schema:

….

schema;type_interfaces:
 type: map
 mapping: &type_interface_mapping
 regex;(port\d+): &type_interface_mapping_port
 type: map
 mapping:
&type_interface_mapping_port_mapping
 name:
 type: str
…..

metadata:
 version: 0.1
 schema:
 - <path-to-schema-file>
tags: [vagrant]

nodes:
 DUT1:
 type: DUT
 host: "192.168.255.101"
 port: 22
 username:
 password: i
 interfaces:
 port1:
 mac_address: "”
 driver: e1000
.....

YAML

kwalify

14

The orchestrator

Verified
YAML/JSON

Topology type:
•  Physical
•  Virtual

Physical:
(No action)

Launch

Vagrant VIRL OpenStack

Verify
Topology

Connection

 objects

Orchestrator

•  Parse the topology, launch(if needed), verify and return connection objects.

•  The orchestrator could be Jenkins, Ansible, test-kitchen or something similar.

15

The Test framework
•  Dozens of tools available – BDD, Data Driven Test , Keyword Driven

Test, etc.

•  We wanted our test cases to be inherently shareable.

•  So we made a bold assertion: Test cases should not be written in
code.

•  Keyword driven Tests won and we chose http://robotframework.org/

16

The Test Suite Structure

Topography/
Scenario

Topology-independent
Actions:

-  Action 1, validation 1
-  Action 2, validation 2
-  ….

Validation

eg. Define Device roles
and set up an L3VPN
topology

eg.
•  Clear BGP neighbors
•  Flap interface etc.

Validates that the
scenario works post all
the actions.

•  Topography/Scenario is
topology dependent.

•  The entire test suite is

written only using
keywords.

•  Keywords are exposed by
the Robot-framework
Libraries.

•  These test cases can be
shared with the community

17

The Test libraries – Model Driven

robotframework

Topography/
Scenario

Topology-independent
Actions:

-  Action 1, validation 1
-  Action 2, validation 2
-  ….

Validation

MD-test
library

ydk-py

Ansible

Keywords Napalm

Model-Driven
Actions and
Validations

18

Bringing it all together

Launch Verify
Topology

Orchestrator

Topography/Scenario

Topology-independent
Actions:
-  Action 1, validation 1
-  Action 2, validation 2
-  ….

Validation

MD-test
library

robotframework

Testers Framework Developers DUT/SUT

19

Shareable BGP Tests written using
robotframework.

Demo!

BGP

OSPF
OSPF PE1

PE2
P

20

Check us out on Github!

•  Robo-YDK organization: https://github.com/roboydk

•  Robotframework YDK library: https://github.com/roboydk/roboydk

•  Ansible-Topology Orchestration: https://github.com/roboydk/orchestrator

•  Packet Injection based topology verification:
https://github.com/roboydk/topo-verify

21

Thank you!

