o],
CISCO

Test your way to a better
Deployment!

Akshat Sharma, TME, Web Solutions, Cisco.

October, 2016

Network Deployment is pretty
Straightforward

CFEngine /i puppet
Automated NetOps: ‘\r v @ raletops
ZTP’ Conﬁ M mt".. AAAAAAA /‘,
Sl CHEF Y ©
SALTSTACK

Y~ @ 5 & 4=
Installation
(Truck Roll)

Service
Activation

...maybe a bit of Pre-staging...

CFEngine /i puppet

r 1 @ PalletOps
27
[4

SALTSTACK

Service
Pre-Staging Activation

... A bit of monitoring, some hands-on deck, more
truck-rolls when things go south.......

CFEngine / puppet

PalletOps

NetOps:
ZTP, Config Wagp ansioie
Mgmt.... CHE F

SALTSTACK go
P —
(!ﬁ[f
Service :
Activation

Pre-Staging

Ok, Network Deployment is complex!

Hence the need for Validation and Test Cycles.

010101010101 0101

1010101010101 010

. 01010101 01010101

These cycles must model real-life deployments fytafs "\ N 516101
101 1 =0 0101010

I 010 Ww— 4/,1010101
and variables. 1010 L (10101010

0101v.-. 01010101

Takes time — weeks... mostly months ...

10101010.04
01010101010
101010101010,

Considerable investment on testing hardware
and on good Testers/Developers.

Deconstructing Network
Test and Validation

Validation Cycle Requirements

Representative Exhaustive Time and Cost
Test Environments Automated Tests Constraints

Time:
Cover Test Ve:/ Reduce months to

Topographies /
Scenarios

Actions:
 Functional

* Negative

Validations

The problems at hand...

* Vendor network protocol implementations are notoriously
difficult to test

* Custom Vendor specific APls

» Lack of Models: No consensus on outputs/responses and
capabilities

 Non-overlapping tool coverage : Ansible coming close to
multi-vendor support but no other alternative.

 Cannot commit to one tool over the other. Test
Frameworks need to be modular.

Creating an open-source Test
Framework:

Our Journey

The 5 Commandments:

« Workflow and Tool selection should never be bound by
architectures. Be Flexible.

« Keep the stack modular and composable.

* Re-use existing industry tools — Do NOT start from scratch
unless there is a gap.

« Create a community to share test cases and extend libraries. =4 T
« Stand on the shoulders of giants: Leverage work already _:-é
done by communities like opendaylight, fd.io etc. -Jad.io

Creating one piece at a time...

Topologies

A network is just an undirected graph. Nodes and Edges with certain
properties that form the connections.

Topologies

Define a schema, put it in YAML or JSON and run kwalify tests to verify
the input is valid.

Schema]
schema;topology _metadata_map: —
type: _map metadata:
mapping: version: 0.1
version: schema:
type: any - <path-to-schema-file>
schema:

kwal ify tags: [vagrant]

nodes:
DUT1:
schema;type_interfaces: type: DUT
type: map host: "192.168.255.101"

mapping: &type_interface_mapping V port: 22
regex;(port\d+): &type_interface_mapping_port username:
type: map password: i
mapping: interfaces:
&type_interface_mapping_port_mapping port1:

name:

mac_address: "
\ type: str / \ driver: e1000 /

The orchestrator

» Parse the topology, launch(if needed), verify and return connection objects.

« The orchestrator could be Jenkins, Ansible, test-kitchen or something similar.

Verified
YAML/JSON

Sianoschona >

Topology type:
Physical
* Virtual

-

Launch

~

\

Orchestrator

Verify
Topology

~

v

Physical:

v

Vagrant

(No action)

VoV

VIRL OpenStack

N

Connection
objects

The Test framework

Dozens of tools available — BDD, Data Driven Test , Keyword Driven
Test, etc.

outl ine .
I /en

behave

ples

behavior

Cucumb[:é]r

We wanted our test cases to be inherently shareable.

So we made a bold assertion: Test cases should not be written in
code.

Keyword driven Tests won and we chose http://robotframework.org/

The Test Suite Structure

-

Topography/
Scenario

eg. Define Device roles

and set up an L3VPN

Topology-independent
Actions:

- Action 1, validation 1
- Action 2, validation 2

topology

Validation

_

eg.
» Clear BGP neighbors
» Flap interface etc.

Validates that the
scenario works post all

the actions.

|

Topography/Scenario is
topology dependent.

The entire test suite is
written only using
keywords.

Keywords are exposed by
the Robot-framework
Libraries.

These test cases can be
shared with the community

The Test libraries — Model Driven

4 h

Topography/
Scenario

Topology-independent
Actions:

- Action 1, validation 1
- Action 2, validation 2

Validation

_ J

Keywords

Model-Driven
Actions and
Validations

J

robotframework

Bringing it all together

Testers

Framework Developers

DUT/SUT

/'I'opography/Scenario\

Topology-independent
Actions:

- Action 1, validation 1
- Action 2, validation 2

K Validation /

- s EEs e e S e B M B B B e B e M B e e e e e

(Orchestrator \

Verify

Launch [

MD-test
library

robotframework

BGP

Demo!

Shareable BGP Tests written using
robotframework.

Check us out on Github!

* Robo-YDK organization: https://github.com/roboydk

» Robotframework YDK library: https://github.com/roboydk/roboydk

» Ansible-Topology Orchestration: https://github.com/roboydk/orchestrator

» Packet Injection based topology verification:
https://github.com/roboydk/topo-verify

Thank you!

