

#### Microsoft Network. Not the Internet!



- Services traverse the Microsoft WAN
- WAN experiencing exponential 'organic' growth as cloud adoption accelerates
- Trans-oceanic capacity needs a creative solution



### Undersea Cables in the Azure Network



#### **DRY PLANT**

#### **WET PLANT**



Cable Landing Station

Backup generators

(almost as big as landing station)





**Shore Burial** 



**Undersea Plow** 

# Cable and Powering

Shore powering with PFE and 'virtual' ground

Shunt faults and single end feeding



 Cable fault 'leaks' current into sea (which grounds cable). PFE changes virtual ground and keeps cable running!

# Repeaters

- 25 year lifetime at bottom of Ocean
  - Depth up-to 8000m (Japan trench)
- Repeaters every 60km –
  100km (over 200 repeaters across the pacific!)
- ... we get to put our name on the repeaters



· \$\$\$

# Reliability

Cables get cut!

- It takes weeks to fix them
- Each cable is less-than 99.9% available
  - High MTTR of deep water work.
- Need 3-or-more diverse routes between regions to achieve 5-9's



## **Problem Statement**

## SLTE

- Transponders and power management for cable
- Use latest technology to get the most out of the cable.
- Cycle SLTE every ~5 years as technology advances (cable has 25 year lifetime).
  - Cycle multiple SLTE over life of Cable.

| Modulation | Capacity (today's view 2017)             |
|------------|------------------------------------------|
| QPSK       | 12 Tb/s<br>[~30Gbaud @ 37.5 GHz spacing] |
| 8QAM       | 18 Tb/s<br>[~30Gbaud @ 37.5 GHz spacing] |
| 16QAM      | 24 Tb/s<br>[~30Gbaud @ 37.5 GHz spacing] |





# Options for SLTE + Cable



#### Closed Systems

Turnkey end-to-end solution

**Upside**: Easy

**Downside**: locked into 1 vendor, limited to their equipment

Over 25 year lifetime, generally not a good idea.



#### Upgradeable Systems

Initial build is Turnkey

Subsequent upgrades are open to other dry plant suppliers

**Upside**: Potential for better capacity at lower cost per bit

**Downside**: Long upgrade cycles. Lack of data on wetplant requires field trials and rolling lab



## Open Cable Systems

OLS like attributes

Any third party solution for day one deployment

Open, programable hardware

- Vendor agnostic API (REST)
- Simple CLI
- UDP based alert/alarm

**Upside:** Best upgrade costs. Fast upgrade cycle. Flexible over 25 years.

**Downside**: Most up-front work

# Upgradable System Concept

Offers SLTE / Cable disaggregation, but...



Difficult to separate SLTE from Cable Infrastructure

Rolling Lab (Field Trial) required to understand wet-plant specifications



## Upgradable System – Upgrade Cycle

2 months of planning + rolling lab + 6 people, 2 weeks, 16 hour days onsite.



Needed to measure wet-plant specifications. Original turnkey system data abstracted behind dry-plant



# Open Undersea Cable

- Designed specifically to be disaggregated and vendor agnostic
- Includes sufficient open hardware to monitor an maintain the cable <u>separate</u> from the terminal equipment
- Integrate seamlessly with Terrestrial Open Line System



# **Specification Table**

- Performance Acceptance and lifetime SLA monitoring defined on line system characteristics
  - Most notably OSNR, Power, Tilt, Gain Deviation



| Name                                          | Example Cable       |            |
|-----------------------------------------------|---------------------|------------|
| Segment                                       | Example Segment     |            |
| Landing Sites                                 | A                   | В          |
| Length                                        | x,xxx               | km         |
| Quantity of Channels at Full Loading carriers |                     | carriers   |
|                                               | Start-of-Life [SOL] |            |
|                                               | Average             | Worst Case |
|                                               |                     |            |
| 1. System Specification                       |                     |            |
| 1.1 Power [dBm/carrier] at full loading       |                     |            |
| 1.2 Slope of Tilt [dB/THz]                    |                     |            |
| 1.3 Gain Deviation from tilt [dB]             |                     |            |
| 1.4 Equalized OSNR [dB/0.1nm] across the      |                     |            |
| Passband at full loading                      |                     |            |
| 1.5 Span Length [km]                          |                     |            |
| 1.6 Span Loss [dB]                            |                     |            |
| 1.7 Passband Start/Stop [THz]                 |                     |            |
| 1.8 Average DGD across the Passband [ps]      |                     |            |
| 1.9 mean PDL [dB]                             |                     |            |
| 1.10 Total accumulated Chromatic Dispersion   |                     |            |
| [ps/nm] at 1550nm                             |                     |            |
|                                               |                     |            |
| 2. Repeater Specification                     |                     |            |
| 2.1 Repeater Total Output Power [dBm]         |                     |            |
| 2.2 Average Repeater Noise Figure across      |                     |            |
| Passband[dB]                                  |                     |            |
| 2.3 In-band monitoring channel(s) [THz]       |                     |            |
| 2.4 In-band monitoring channel width [GHz]    |                     |            |
|                                               |                     |            |
| 3. Fiber Specification                        |                     |            |
| 3.1 Fiber Effective Area [um^2]               |                     |            |
| 3.2 Fiber Chromatic Dispersion [ps/nm/km]     |                     |            |
| 3.3 Fiber Attenuation [dB/km]                 |                     |            |
| 3.4 Fiber Dispersion Slope [ps/nm^2/km]       |                     |            |

### End-to-End Design, "Packet switched CLS"

- "POP-to-POP" lowers SLTE cost, but is bad for availability and spectral efficiency.
- Landing stations are excellent locations for packet switching



## Alignment with Terrestrial Open Line Systems

The Open Cable aligns with our Terrestrial Strategy

- OSNR based acceptance
- Direct nodal control
- Disaggregated Line and Sources



Long life-time / Static tech

Photonics – akin to Highways

## Port Allocation in Cloud Network

- SDN Tooling built and optimized for majority usecases
- Subsea ports are extremely important, but operations, control, and management need to align with majority use cases.
  - No NMS, REST APIs, OpenConfig, etc..





### Marea Cable

Our first completely open cable acceptance.

 Previous cables were designed closed and converted to open.

## Cable acceptance separate from SLTE acceptance

- Cable will be accepted on OSNR, tilt, core size, CD, etc..
- Enhanced line monitoring separate from SLTE



