pnda.io

When **BGP** meets **Big-Data**

© 2016 PNDA a Linux Foundation Collaborative Project. All Rights Reserved. Linux Foundation is a registered trademark of The Linux Foundation. Linux is a registered trademark of Linus Torvalds. Please see our privacy policy and terms of use.

The Internet is very much 'alive'

Millions of BGP events occurring every day

- 15 Routers Monitored
- 410 active peers (both IPv4 and IPv6)
- ~120,000,000 Prefixes Advertised

- ~950,000 events per day from a single transit peer
- ~202,000,000 changes per day
- ~6,000,000,000 changes per month
- How do we extract 'signal' from 'noise'?
 Can we apply techniques from other domains in this pursuit?

The Internet is very much 'alive'

- If we know the questions we want to ask, how do we ask them?
- Enhance traditional dampening and suppression with analytics

Five Monitoring Points in BGP

Five Monitoring Points in BGP

SNAS Architecture

SNAS Architecture

^{© 2017} PNDA a Linux Foundation Collaborative Project. All rights reserved

E2E architecture

- Encoding app required to perform 'avro' encoding of **BMP** data
- BGP App runs as Spark batch job, running periodically
- Can be converted to a Spark 'streaming' application for near-real-time processing

peer

Internet

What does this give us?

SNAS.io gives us the ability to record the dynamics of the Internet PNDA platform enables -

- 'Raw' event recording capability, with horizontal scaling (HDFS)
- Run analysis over very large data-sets with parallelism
- Ask questions of the aggregate data about the Internet
- Ask specific question
 - Per-prefix
 - Per-AS
 - Per AS-Path

Top-N analysis

PREFIXES ORIGINATED AND TRANSITTED PER AS

ASN Origins \sim Routes 💌 🗸 Change c....

← Results 0 to 30 →

TOTAL ITEMS: 30

2017 PNDA a Linux Foundation Collaborative Project. All rights reserved

CONTROLS

Path stability

AS 15412 INFORMATION

Asn	15412
As_name	FLAG-AS
Org_id	ORG-FT3-RIPE
Org_name	Reliance Globalcom Limited
Address	635 Sipson Road UB7 0JE London UNITED KINGDOM
City	Null
State_prov	London
Postal_code	Null
Country	UNITED KINGDOM
Timostomo	2015 OF OF 02-42-52

PREFIXES WITH AS PATH CONTAINING AS 15412

Prefix	 Origin AS 	~
37.44.56.0/22	57218	
43.225.47.0/24	55933	
94.187.192.0/24	196921	
45.120.19.0/24	132568	
165.220.128.0/18	3550	

AS Connectivity - FLAG

l rights reserved.

AS Connectivity – Deutsche Telekom

÷

Prefix to Path history

© 2017 PNDA a Linux Foundation Collaborative Project. All rights reserved.

AS Path variance – 6939 to 8386

Shortest path – 3 hops Longest path – 28 hops Longest unique AS path – 5 Unique paths - 9 Largest prepend count – 17x Prepend variation – [7-17] Path with most updates – via AS1273

Data recorded in a 24hr period

AS Path variance – 6939 to 8386

Shortest path – 4 hops Longest path – 29 hops Longest unique AS path – 6 Unique paths - 9 Largest prepend count – 17 Prepend variation – [7-17] Path with most updates – via AS1273

Data recorded in a 24hr period

Security – Short prefix / long prefix detection

Martian anomalies

Prefix length anomalies

390 -

<mark>2 -</mark>

PREFIX LENGTH ANOMALIES

Download data: JSON

Prefix ~	Origin AS ~	Peer AS v	AS Path	~	Advertising Routex.	Type ~	Timestamp 💌 🗸
0.0.0/0	6939	11017	11017 6939		192.133.197.1	IPv4	2017-04-26 13:38:10
216.66.32.160/28	6939	11017	11017 6939		192.133.197.1	IPv4	2017-04-26 13:38:10

Default Route and Long prefix injection detected

Security – Unallocated prefixes

Download data: JSON ground truth

Prefix ~	Origin AS 🗸 🗸	Peer AS v	AS Path	~	Advertising Routex.	Type ~	Timestamp 💌 🗸	Last Seen ~	Still x.	Category
202.181.6.0/24	134943	11017	11017 6939 9498 134943		192.133.197.1	IPv4	2017-04-26 13:38:10	2017-04-26 11:16:35	true	unallocated
202.181.6.0/24	134943	6939	6939 3491 9498 134943		192.133.197.1	IPv4	2017-04-26 13:38:10	2017-04-26 11:16:35	true	unallocated
116.199.203.0/24	38521	6939	6939 3491 58552 38521		192.133.197.1	IPv4	2017-04-26 13:38:09	2017-04-25 16:14:40	true	unallocated
202.181.6.0/24	134943	6939	6939 1299 5511 9498 134943		192.133.197.1	IPv4	2017-04-26 13:38:09	2017-04-26 11:16:35	true	unallocated
103.207.91.0/24	63969	11017	11017 6939 3491 9498 58715 63969		192.133.197.1	IPv4	2017-04-26 13:38:09	2017-04-25 16:14:39	true	unallocated
103.247.31.0/24	132122	6939	6939 1299 5511 9498 9730 132122		192.133.197.1	IPv4	2017-04-26 13:38:09	2017-04-26 05:14:54	true	unallocated
103.243.8.0/22	133676	6939	6939 5511 9498 133676		192.133.197.1	IPv4	2017-04-26 13:38:09	2017-04-25 16:14:40	true	unallocated
100 047 01 0/04	100100	6020	6000 4607 0400 0700 100100		100 100 107 1		2017 04 06 12:20:00	0017 04 06 0E-14-E4	+0.00	upollogotod

TOTAL ITEMS: 957

Observed over a 12 hour period

© 2017 PNDA a Linux Foundation Collaborative Project. All rights reserved.

Security – Prefix drill-down

Download data: JSON ground truth

Prefix ~	Origin AS 🗸 🗸	Peer AS v	AS Path	~	Advertising Routex.	Type ~	Timestamp 👻 🗸	Last Seen v	Still x.	Category
103.212. 🗙										
103.212.178.0/24	56124	6939	6939 15412 18101 55410 56124		192.133.197.1	IPv4	2017-04-26 13:37:47	2017-04-25 16:13:41	true	unallocated
103.212.178.0/24	56124	6939	6939 1273 55410 56124		192.133.197.1	IPv4	2017-04-26 13:37:46	2017-04-25 16:13:41	true	unallocated
103.212.178.0/24	56124	6939	6939 3356 55410 55410 56124		192.133.197.1	IPv4	2017-04-26 13:37:46	2017-04-25 16:13:41	true	unallocated
103.212.178.0/24	56124	6939	6939 3356 55410 55410 56124		192.133.197.1	IPv4	2017-04-26 13:37:46	2017-04-25 16:13:41	true	unallocated
103.212.178.0/24	56124	6939	6939 1299 2914 15412 18101 55410 56124		192.133.197.1	IPv4	2017-04-26 13:37:46	2017-04-25 16:13:41	true	unallocated
103.212.178.0/24	56124	6939	6939 3209 55410 55410 55410 56124		192.133.197.1	IPv4	2017-04-26 13:37:40	2017-04-25 16:13:41	true	unallocated

AS PATHS

Security – drill-down

Download data: JSON ground truth

Prefix ~	Origin AS v	Peer AS v	AS Path	~	Advertising Routex.	Type ~	Timestamp 🝷 🗸 🗸	Last Seen ~	Still x.	Category
	58934 🗙									
191.37.252.0/24	58934	11017	11017 6939 12389 48066 58271 58934		192.133.197.1	IPv4	2017-04-26 13:37:50	2017-04-25 16:13:49	true	unallocated
138.59.180.0/23	58934	6939	6939 1273 12389 48066 58271 58934		192.133.197.1	IPv4	2017-04-26 13:37:50	2017-04-25 16:13:48	true	unallocated
200.3.10.0/23	58934	11017	11017 6939 12389 48066 58271 58934		192.133.197.1	IPv4	2017-04-26 13:37:50	2017-04-25 16:13:48	true	unallocated
177.154.93.0/24	58934	6939	6939 12389 48066 58271 58934		192.133.197.1	IPv4	2017-04-26 13:37:49	2017-04-25 16:13:50	true	unallocated
200.0.202.0/23	58934	6939	6939 12389 48066 58271 58934		192.133.197.1	IPv4	2017-04-26 13:37:49	2017-04-25 16:13:48	true	unallocated
177.73.253.0/24	58934	6939	6939 12389 48066 58271 58934		192.133.197.1	IPv4	2017-04-26 13:37:49	2017-04-25 16:13:48	true	unallocated
177.154.93.0/24	58934	6939	6939 12389 48066 58271 58934		192.133.197.1	IPv4	2017-04-26 13:37:49	2017-04-25 16:13:50	true	unallocated

AS PATHS

More specific prefix detection

- AS 12345 originates 100.100.0.0/18
- Hijacker originates 100.100.63.0/24
- Basically a needle in a large haystack, does anyone notice?
- What does RPKI show?
- Do the origin ASNs match?
- Does the less specific share the same transit set or similar as_paths?
- Does RIR have the same organization name or contacts for both origins?
- Anything out of the norm for the new originating ASN?

Potential

What can we do with large-scale collection of historical event information?

- Event impact analysis
 - Stability
 - Security
 - Misconfiguration
 - Forensics
- Application of ML/DL to data-set

Pattern-detection and network 'weather forecasting'

PNDA.io – the platform

What is PNDA?

PNDA brings together a number of open source technologies to provide a simple, scalable open big data analytics Platform for Network Data Analytics

Linux Foundation Collaborative Project based on the Apache ecosystem

Where is PNDA today?

- Linux Foundation project
- Selected by MEF for Analytics function within Lifecycle Service Orchestration framework
- In service trials with two Service Providers
- One platform supporting a range of use-cases including
 - Network security Apache Spot
 - 6CN
 - Virtualization infrastructure monitoring and analysis
 - Smart Cities
 - Smart Transportion use-cases

PNDA

- Horizontally scalable platform for analytics and data processing applications
- Support for near-real-time stream processing and in-depth batch analysis on massive datasets
- Decouples data collection and aggregation from data analysis
- Consuming applications can be either platform apps developed for PNDA or client apps integrated with PNDA
- Client apps can use one of several structured query interfaces or consume streams directly.

 Leverages best current practise in big data analytics © 2017 PNDA a Lintx Foundation Collaborative Project. All rights reserved.

PNDA

- Simple, scalable open data platform
- Provides a common set of services for developing analytics applications
- Accelerates the process of developing big data analytics applications whilst significantly reducing the TCO
- PNDA provides a platform for convergence of network data analytics

Why PNDA?

Innovation in the big data space is extremely rapid, but combining multiple technologies into an end-to-end solution can be extremely complex and time-consuming

PNDA removes this complexity and allows you to focus on developing the analytics applications, not on developing the pipeline – significantly reducing the effort required and time-to-value

PNDA Software Components

. All rights reserved

Where can I learn more?

- www.pnda.io
- https://github.com/pndaproject
 www.snas.io

© 2016 PNDA a Linux Foundation Collaborative Project. All Rights Reserved. Linux Foundation is a registered trademark of The Linux Foundation. Linux is a registered trademark of Linus Torvalds. Please see our privacy policy and terms of use.

