
Internet-scale Virtual Networking

Petr Lapukhov
Network Engineer

Using Identifier-Locator Addressing

Facebook

Virtual networking is confusing!

What problem FB is trying to solve?

Linux application containers

Simpler and more lightweight than

Container networking: challenges
•Many containers per host: address sharing
•Containers can move: address would change

Container networking: two goals…
•IPv6 address per process
•Address mobility <>

Identifier Locator Addressing (ILA)

Identifier / Locator split

Predecessors: ILNP/GSE/8+8…

64 bit: Locator 64 bit: Identifier

IPv6 Address

Used for routing
Immutable name

128 bit

Mobility with Locator/ID split
•Every host gets /64 prefix - locator (!)
•Processes migrate between machines
•Identifier remains the same, locator changes
•Mutable locator require transport stack modification <>

ILA specifics
•Hides locator changes from transport layer
•Transport always sees one fixed locator (/64 prefix)
•Stateless rewrites (NAT) below transport layer <>

ILA Host
•Every host needs a routable locator: IPv6 /64 prefix
•Hosts need to maintain ILA mapping cache
•Non-ILA hosts talk to ILA hosts via ILA routers <>

Process 1  

ILA Address
face:b00c::1234

ILA Address
face:b00c::5678

Process 2  

Locator
fec0:cafe::/64

Host 1 Host 2

Locator
fec0:beef::/64

NA NA

face:b00c::

face:b00c::

fec0:cafe::1234

fec0:beef::

Before NAT

On Wire  
(after 1st NAT)

SIR Prefix
face:b00c::/64

face:b00c::

face:b00c:: After 2nd

SIR Prefix
•SIR = “Standard Identifier Representation”
•SIR Prefix = 64 bit “fixed-locator” seen by transport
•Injected into network by all ILA Routers (anycast) <>

ILA network
face:b00c::/64

Process 1
face:b00c::1234

Process 3
face:b00c::5678

Process 2
face:b00c::abc

ILA Addresses: one “virtual” /64
subnet

Non-ILA
networks

ILA
Router

ILA Router
•Knows of all active mappings
•Injects /64 SIR prefix into IPv6 network
•“Mediates” between ILA and non-ILA hosts
•May also mediate between ILA-hosts
•Acts like an IPv6 router on “virtual” /64 segment <>

ILA Hosts

Non-ILA Host

Injects SIR prefix  

face:b00c::

face:b00c::

face:b00c::ab

Talks to ILA Router

Translates  

ILA Host responds  
directly to non-ILA

ILA Router and non-ILA hosts

IPv6

ILA Hosts

Injects SIR prefix  

ID:1234

ID: 5678

ILA Router

Sends redirect

Translates and 
routes to

Using ILA Router to b/w ILA hosts

No locator for  
face:b00c::1234 

send to ILA router

Route using

Talks  
to 

1234

What about control plane?

Goal: disseminate ILA mappings

Good news: there is no standard!

ILA specifics
•ILA routers know of all mappings
•ILA hosts always publish into mapping system <>

ILA: Data-plane assistance
•ILA routers may send redirect messages
•Hosts may send stale mapping messages
•Similar to ICMPv6 messages <>

Now the fun: identifier mobility

A

ILA Hosts

C

ID: 1234

ID: 5678

Translates  

ILA  
Routers

Container moves b/w hosts

B

Invalid

Fallback to

Redirect

New Locator  
for 1234

Flow

Flow 

Forwar

Scheduler  
removes  

Mobility recap
•Data-plane driven cache invalidation
•ILA routers provide fallback on cache invalidation <>

Deployment @ FB

Network Setup
•Every server gets /64 route
•Summarized to /54 on rack switch
•Summarized to /46 on pod switch
•Sums up to /32
•Can fit 32 data-centers per /32 <>

Rack = /54

Pod = /46

Spine

DC Hierarchy

Host Configuration
•New /64 per host - every machine @FB
•Part of host bootstrap info
•Applied by Chef recipe

$ ip -6 a ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
 inet6 2803:6082:18e0:e825::1/64 scope global deprecated
 valid_lft forever preferred_lft forever
 inet6 2401:db00:11:d03a:face:0:25:0/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::f652:14ff:febe:fe54/64 scope link
 valid_lft forever preferred_lft forever

Locator

Unique IPv6 per process!
•Random 64bit ID allocated on container start
•UUID64 - timestamp + host name + some magic <>

How can process use IPv6?
•Passed explicitly as environment variable
•…Could be enforced via LD_PRELOAD
•Namespaces/ipvlan currently experimental <>

DNS Support
•DNS name per container
•E.g. ‘tsp-prn.netsystems.test-task.0.tw.local’
•Both AAAA and PTR created simultaneously
•ZippyDB as backing store <>

Host support: Kernel 4.x+
•ILA rewrites: Light-weight tunnels (LWT)
•Linux route lookup + rewrite action
•Programmable via netlink API <>

Host support: ip route primer

Set local SIR address
ip -6 addr add face:b00c:0:0:2555:0:1:0/128 dev lo

Remote
Locator

My  
Locator

My  
ID

Remote  
ID

SIR  
Prefix

Add peer with ILA translation
ip -6 route add face:b00c:0:0:2555:0:2:0/128 encap ila 2803:6080:8960:4473 via
2401:db00:20:4001::a

Add local prefix translation
ip -6 route add table local local 2803:6082:1950:401:2555:0:1:0/128 encap ila
face:b00c:0:0 dev lo

modprobe ila

SIR  
Prefix

ILA Routers @ FB
•Linux machine with IPv6 forwarding enabled
•Regular routing with LWT “ila” rules
•Currently: all hosts are ILA routers <>

Control plane hack

ZippyDB

ILA Hosts  
==

Container
starts

&  
address get

Publish
Mapping

+  
Download
mappings
every 5s

ZippyDBAsync
replication

ILA caches 
synchronized

Control plane recap
•ZippyDB to push & pull mappings
•Runs on ~ 10k+ hosts
•Low number of mobile tasks (100s)
•Very easy to experiment with <>

Operational implications
•ICMP: TTL expired, unreachable (traceroute, PMTUD)
•Contain “translated” SRC/DST addresses
•Need fix in kernel to translate back <>

What’s next?

eBPF

eBPF
•BPF (Berkeley Packet Filter) - stuff you use in tcpdump
•eBPF - extended BPF
•JIT-compiled BPF with richer instruction set
•Virtual machine in Linux kernel! <>

Why it’s a big deal?
•eBPF allows extending kernel functions
•…From user-space. On the fly.
•Multiple points of code injection in kernel
•We built the ILA router code in eBPF <>

XDP

eXpress Data Path
•XDP == Linux kernel bypass inside kernel!
•Fast in-kernel networking
•Packet processing pre-network-stack via eBPF
•E.g. lookup and address rewrite
•Punt to network stack if needed <>

The finale

ILA is…

IPv6 Address per process

Location independence

Builds on XDP + eBPF

Thank you 
<>

