Internet-scale Virtual Networking
Using Identifier-Locator Addressing

Petr Lapukhov

Network Engineer
Facebook

Virtual networking is confusing!

What problem FB is trying to solve?

Linux application containers

Tl mmm"iim’”

I

.
b |
) 1 ‘
B ¥ Y Y [P
L _

o . -)
.
~ : - b
- |+ - —_ ‘___ :
S - ———y
= - B
_“::::~ g B -
T L ey | LT =)
——— .-
o — . X " - L
—“ [wwe— i
. . -
" b . g
. - R .
- S —— — . ,"‘;"
- “I P
— — : %
e . S (=
) R T SAbae
-~ p

Simpler and more lightweight than

Container networking: challenges

*Many containers per host: address sharing
*Containers can move: address would change

Container networking: two goals...

*|Pv6 address per process
*Address mobility <>

ldentifier Locator Addressing (ILA)

ldentifier / Locator split

Predecessors: ILNP/GSE/8+8...

IPVv6 Address

Used for routing \

Immutable name

Mobility with Locator/ID split

*Every host gets /64 prefix - locator (!)

*Processes migrate between machines

|dentifier remains the same, locator changes

*Mutable locator require transport stack modification <>

ILA specifics

*Hides locator changes from transport layer
*Transport always sees one fixed locator (/64 prefix)
*Stateless rewrites (NAT) below transport layer <>

ILA Host

*Every host needs a routable locator: IPv6 /64 prefix
*Hosts need to maintain ILA mapping cache
*Non-|LA hosts talk to ILA hosts via ILA routers <>

Host 1

Process 1

ILA Address
face:b00c::1234

Locator
::/64

SIR Prefix
face:b00c::/64

fecO:beef

fecO:cafe

After 2nd
——>

On Wire
(after 1st NAT)

—_—

Host 2

Process 2

ILA Address
face:b00c::5678

Locator
::/64

SIR Prefix

*SIR = “Standard ldentifier Representation”
*SIR Prefix = 64 bit “fixed-locator” seen by transport
*|njected into network by all ILA Routers (anycast) <>

ILA Addresses: one “virtual” /64
subnet

Process 2
face:b00c::ab

Process 1
face:b00c::1234

Process 3
face:b00c::5678

ILA Router

*Knows of all active mappings

*|Injects /64 SIR prefix into IPv6 network
*“Mediates” between ILA and non-ILA hosts

*May also mediate between ILA-hosts

*Acts like an IPv6 router on “virtual” /64 segment <>

ILA Router and non-ILA hosts

ILA Hosts
ILA Host responds

directly to non-ILA
face:b00c:: B

Translates

face:b00c:: . 4$> Injects SIR prefi

ILA Router ™
face:b00c::ab .

Non-ILA Host

Talks to

Using ILA Router to b/w ILA hosts

ILA Hosts

Translates and

ID:1234

ILA Router
Sends redirect

$ Injects SIR prefix

m w ¥
- = -
——--
- -
——
|
- w
— 7
,,,,,
- .
-
L
.
.
|
.
L
.
L
“
' g

No locator for
Talks face:b00c::1234
to send to ILA router
1234

Route using

What about control plane?

Goal: disseminate ILA mappings

Good news: there is no standard!

ILA specifics

*|LA routers know of all mappings
*|LA hosts always publish into mapping system <>

ILA: Data-plane assistance

*|LA routers may send redirect messages
*Hosts may send stale mapping messages
*Similar to ICMPv6 messages <>

Now the fun: identifier mobility

Container moves b/w hosts

ILA Hosts

Ju N I I N m N N N NN mom
< LI -
) o my -y

for L

N

Scheduler

£ N
1 : \ . .
ramoyves:
[" Ny ~
,)| ~ o

Routers

-
-- -
—'_-
- -
-
- -
-
-
-
-
-
-
-
-
-
.

ID: 5678 Fallback to

Mobility recap

*Data-plane driven cache invalidation
*|LA routers provide fallback on cache invalidation <>

Deplovment @ FB

Network Setup

DC Hierarchy
*Every server gets /64 route
Summarized to /54 on rack switch 4$> Spine
-Summarized to /46 on pod switch
*Sums up to /32 <$> Pod = /46
*Can fit 32 data-centers per /32 <> a
4$> Rack = /54

Host Configuration

*New /64 per host - every machine @FB
*Part of host bootstrap info
*Applied by Chef recipe

S ip -6 a ls
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536
inet6 ::1/128 scope host
valid 1ft forever preferred 1ft forever
2: ethO: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 glen 1000
inet6 2803:6082:18e0:e825::1/64 scope global deprecated
valid 1ft forever preferred 1ft forever
Locator inet6 2401:db00:11:d03a:face:0:25:0/64 scope global
valid 1ft forever preferred 1ft forever
inet6 fe80::f652:14ff:febe:fe54/64 scope link
valid 1ft forever preferred 1ft forever

Unique IPv6 per process!

*Random 64bit ID allocated on container start
*UUID64 - timestamp + host name + some magic <>

How can process use IPv6?

*Passed explicitly as environment variable
*...Could be enforced via LD_PRELOAD

*Namespaces/ipvlan currently experimental <>

DNS Support

*DNS name per container

*E.g. ‘tsp-prn.netsystems.test-task.0.tw.local
Both AAAA and PTR created simultaneously
*ZIppyDB as backing store <>

Host support: Kernel 4.x+

*|LA rewrites: Light-weight tunnels (LWT)
*Linux route lookup + rewrite action
*Programmable via netlink APl <>

Host support: ip route primer

My Remote
SIR D Locator
Prefix
modprobe 1ila J/
Set local SIR address
ip addr add face:b00c:0:0: /128 dev 1o
Add peer with ILA translation
ip route add face:b00c:0:0: /128 encap 1la - : - vVia
:db00:20: e <4~.____-~
Remote

Add local prefix translation 1D
1p route add table local local : . :
face:b00c:0:0 dev lo

N /

SIR My
Prefix Locator

/128 encap 1la

ILA Routers @ FB

*Linux machine with IPv6 forwarding enabled
*Regular routing with LWT “ila” rules
*Currently: all hosts are ILA routers <>

Control plane hack

Async
replication »
\ Publish
Download \ Mapping
mappings . +
every 5s .
Container
ILA Hosts starts
— &

address get

ILA caches
svynchronized

Control plane recap

*ZippyDB to push & pull mappings
*Runs on ~ 10k+ hosts

*L.ow number of mobile tasks (100s)
*Very easy to experiment with <>

Operational implications

*|CMP: TTL expired, unreachable (traceroute, PMTUD)
Contain “translated” SRC/DST addresses
*Need fix in kernel to translate back <>

What’s next?

eBPF

BPF (Berkeley Packet Filter) - stuff you use in tcpdump
¢BPF - extended BPF

*JIT-compiled BPF with richer instruction set

*Virtual machine in Linux kernel! <>

Why it’s a big deal?

*eBPF allows extending kernel functions
»...From user-space. On the fly.

*Multiple points of code Injection in kernel
*We built the ILA router code in eBPF <~

XDP

express Data Path

*XDP == Linux kernel bypass inside kernel!

* Fast in-kernel networking

*Packet processing pre-network-stack via eBPF
*E.g. lookup and address rewrite

*Punt to network stack if needed <>

The finale

IPv6 Address per process

Location independence

Builds on XDP + eBPF

Thank you
<

