

NANOG 68, Dallas TX October 2016

The Best of OARC25

Paul Ebersman
OARC Board

What's OARC

- The DNS Operations, Analysis, and Research Center
- Five key functions
 - Information Sharing
 - Operational Characterization
 - Workshop
 - Analysis
 - Tools and Services

OARC's Value in Action

- Gathered real-time data during end-2015/ early-2016 attacks
- Post-incident DITL-style upload of attack PCAP from H and K root (thank you!)
- Provided co-ordination resources to root-ops
- Forums for analysis/discussion of what happened, including closed member session at OARC24 workshop

OARC 25

- Just finished yesterday
- Two days of presentations from operators and researchers
 - TLDs, Developers, Academia
- 130 registered attendees
- 68 different organizations

Migrating .CZ to Elliptic Curves

- Going to where no ccTLD has gone before
- Why
 - Smaller responses and zone
 - Testing the algorithm rollover process
- How
 - Measurement experiment
 - Controlled migration of child zones
 - Migrate the parent

Migrating .CZ to Elliptic Curves

Troubles

- 6% of users can do RSA but no ECDSA validation (according to APNIC)
- Communication, communication, communication
- Measurement widget: IPv6, DNSSEC, Speed

Finally

- CZ will migrate when IANA is ready
- Public aware enough

Inter-operator transfer of signed TLDs

- Two signed gTLDs operator transfer
- Carefully planned, lots of steps
- RFC 6781
 - Assumes operators can produce slightly different zones
 - Not true when zone is produced from a backend
- A new IETF document will be produced with guidance to operators

Pre-deployment DNS Testing

- DNSviz now added pre-deployment tests
 - For domains not yet delegated
 - By running tests directly on specified addresses
 - Or running a limited instance of DNS server to answer

Anycast Latency: How many sites are enough

- Why Anycast
 - Latency, DDoS defense, collaboration
- Does it work?
 - Ideally divide the Internet into catchment areas
 - But routing is hard
- How it was measured
 - RIPE ATLAS probes against C, F, K, and L-root
 - Optimal possible latency and catchment areas

Anycast Latency

Results:

- Median latency generally good
- Absolute latency nearly optimal
- Routing policy adds some penalty
- Location matters, specially to the tail
- 12 instances provides good latency
 - More helps with the tail, resilience and collaboration

A study of privacy and anonymity in the DNS

- Pitiful DNS privacy
 - Only query content is protected by encryption
- Proposed techniques for privacy
 - Message padding
 - Message interleaving
 - Alter message timing by introducing artificial delay
- Proposed techniques for anonymity
 - Query chaffing

Exploring CVE-2015-7547

- So far attacks are directed to servers, or try to trick clients
- Exploitation of GLIB C bug
- Attack on the client, requires 3 conditions
 - Trigger buffer resize, force partial retry, deliver payload
 - If payload is delivered, smash the stack
- Particularly dangerous for IoT

On the search for resolvers

- Passively detect resolvers' source address from authoritative DNS data using machine learning
- Motivation: determine which clients could be eligible for whitelisting, or special consideration
- Supervised/unsupervised learning
- Resolvers follow a distinctive traffic pattern and tend to be "sticky"

Rolling the Root Zone DNSSEC KSK

- If you do DNSSEC validation, need to be aware
- Key dates
 - October 27 2016. Generate the new root KSK
 - February 2017: New KSK operationally ready
 - July 11 2017: New KSK added to the root zone
 - October 11 2017, New KSK signs root zone DNSKEY
 - January 11 2018, old KSK revoked
- Rollover will follow RFC 5011
 - If operating correctly, trust anchor will rollover automatically
 - If not manual intervention will be needed

Testing SLD nameservers

- Domains from gTLD zones: 186M
 - Served by 3.5M nameservers
 - Many glue records using questionable addresses
 - Once resolved, nameservers are distributed across 1.5M addresses
 - Around 300,000 unique /24s at least host one nameserver
 - Around 240,000 /24's host at least two
 - Looking at the last octet, .2, .3, .4, .5, .10 and .11 are twice as common as the typical octet
 - ~6.3% of the addresses are open to recursion

The hunger for AAAA

- A ccTLD noted a sudden increase in AAAA for labels without associated AAAA
- It costs money when you are billed by the query
- Using a Big Data platform where able to investigate into the past, detect the main source, produce a report and have it fixed.
- This may affect other operators out there, including ccTLDs

PCAP-TO-HDFS

- CIRA built a real-time platform for DNS traffic analysis for .CA and their DNS anycast service
- Previous solutions not good enough and not scalable
- Hadoop + Flume + Impala + Actor-based concurrency
- Some experiments with Machine Learning

Domain like an Egyptian

HTTP://WWW. _______.NET

- Verisign IDN supports Egyptian Hieroglyphs
- Register a domain not all registrars support it
- Set up a nameserver using punycode
- Client requires font with hieroglyphs
- http://www.xn--5o7dx5d.net/

What to do with SERVFAIL

- On Aug 3, wd2go.com (cloud based storage service) disappeared.
- This causes a lot of stress to resolvers due to SERVFAIL and retries
- Using a lab with different resolver implementation to determine impact
 - Different implementations, different times for SERVFAIL cases
- Client code should have mitigation mechanism for SERVFAIL errors

Yeti DNS: The first experiments

- Yeti DNS: live root DNS server system testbed
- Three experiments so far
 - MZSK: Multiple ZSK
 - Caused troubles with IXFR, needed AXFR
 - BGZSK: Big ZSK (before Verisign announcement)
 - No surprises
 - KROLL: KSK Roll
 - Bumpy due to timers.
 - BIND 9 views problem

Anycast vs DDoS

- DDoS are bad and getting worse
- One attack hit some of the root servers on Nov 30
- During good times anycast keeps traffic contained
- But under attack, what's the best strategy?
 - Keep the site running? Switch to nodes with more capacity? Do nothing?

Anycast vs DDoS

- Summary of the attack
 - 34 GB/s aggregated
 - D, L, M not attacked. A no visible loss, E, F, I, J, K a little bit of loss, B, C, G, H a lot
- RIPE ATLAS used as vantage points to measure loss
 - Site flips from routing changes
 - Collateral damage due to shared sites in some cases

Getting DNSSEC Root TA securely

- Pure Python code
- Minimal external dependencies
- Fetch file, validate signature, generate in right format
- https://github.com/kirei/dnssec-ta-tools

ENT was here!

- In May 2016, the National Security Agency of France reported broken validation for gouv.fr
- All instances of the same anycasted nameservers caused problems: NSD
- .fr zone error free
 - The problem was a combination of ENT name subspace with no signed subzones, NSEC3+Opt-out, BIND for signing, NSD as authoritative
- Still fails with Google DNS
 - Workaround was to introduce a TXT to convert ENT into Non-ENT

When "others" measure the DNS

- When someone is looking for alternatives to host DNS, who to ask?
 - Mailing list? Search Engine? Colleague recommendation?
- Multiple services measuring the DNS
 - Sometimes with dubious methodologies
 - Same providers get wildly different rankings depending on who's measuring them!
 - Failures accounted differently, saturated path skewing results
- Seek for Guidance

For more information https://www.dns-oarc.net