
C H R I S W O O D F I E L D

@ C W O O D F I E L D

B G P M I G R AT I O N S I N A
L I V E DATA C E N T E R

OSPF - THE RIGHT APPROACH AT THE TIME
Layer 3, Multi-area topology

SPINE1 SPINE2 SPINE3 SPINE4

CL1-2CL!-1 CL2-2CL2-1 EDGE2EDGE1

A13414
BackboneTOR1-1 TOR1-2 TOR1-3 TOR1-4

TOR1-1 TOR1-2 TOR1-3 TOR1-4

Area 0.0.0.0

Area 0.0.0.10

Area 0.0.0.20

OSPF - THE RIGHT APPROACH AT THE TIME

• Incomplete BGP Feature Set
in TORs (ca 2010/11)

• Most Traffic was N/S due to
monolithic app

• Clusters divided in logical
“roles” (FE, Storage, …)

• Inter-cluster traffic
augmentation via expansion
of LACP trunks

SPINE1 SPINE2 SPINE3 SPINE4

CL1-2CL!-1 CL2-2CL2-1 EDGE2EDGE1

A13414
BackboneTOR1-1 TOR1-2 TOR1-3 TOR1-4

TOR1-1 TOR1-2 TOR1-3 TOR1-4

Area 0.0.0.0

Area 0.0.0.10

Area 0.0.0.20

OSPF - THE RIGHT APPROACH AT THE TIME?

• App decomposition resulted
in E/W traffic growth far
outpacing N/S

• LACP width became a
scaling chokepoint; adding
more L3 links between
devices added more OSPF
state to track - over 50K
LSAs

• Occasional preference for
intra-area TOR-TOR traffic
routing through other
TORs(!) due to design flaw

Until…

SPINE1 SPINE2 SPINE3 SPINE4

CL1-2CL!-1 CL2-2CL2-1 EDGE2EDGE1

A13414
BackboneTOR1-1 TOR1-2 TOR1-3 TOR1-4

TOR1-1 TOR1-2 TOR1-3 TOR1-4

Area 0.0.0.0

Area 0.0.0.10

Area 0.0.0.20

OSPF TO BGP

• BGP Restores a
“flat” routing
model that is
far more
scalable than
OSPF

• Policy control
point at every
peer

• Easier to see
paths,
diagnose
issues

SPINE1 SPINE2 SPINE3 SPINE4

CL1-2CL!-1 CL2-2CL2-1 EDGE2EDGE1

AS13414
Backbone

TOR1-1 TOR1-2 TOR1-3 TOR1-4

TOR1-1
10.20.0.0/24

TOR1-2
10.20.1.0/24

TOR1-3
10.20.2.0/24

TOR1-4
10.20.3.0/24

OSPF TO BGP

• Ideally, this becomes a “Next-Gen” design applied to the next
major build.

• However, there were no new builds on the horizon, and no
foreseeable way to migrate app to new topology incrementally.

• Thus a decision was made. You may make this decision too.

OSPF TO BGP

IN EACH DATACENTER:

• Backbone Edge Routers (Terminates LBs, FWs, and connects to
DC Fabric)

• Dozens of Fabric/Cluster switches, hundreds of links in Area 0
• Thousands of TORs
• Multiple Tbps of intra-datacenter traffic, supporting…
• A very sensitive real-time application.

FIRST STEPS: ASSESS

Audit BGP capabilities of your hardware. TORs will most likely be
the weakest link.
• FIB limits
• ECMP maximums
• Support for BGP features (32-bit ASNs, Multi-as multipath, …)

State of existing hardware will often dictate your design!

NEXT STEP: DESIGN

• Single or Multiple Spines? Depends on whether or not your TORs
can take a full table - blackhole potential if TOR ECMPs traffic to
aggregate or default routes.

• How many spines? Limit is ECMP maximums on cluster switches
• Shared or unique ASNs? Check support for 32-bit private ASN

range and multiple-AS multipath.

State of existing hardware will often dictate your final design!

AS ALLOCATIONS

• This becomes a lot easier if you can do 32-bit ASNs - 94M ASNs
in private number space per RFC6996

• Device ASN allocations should be an algorithm based on device
record.

For numerical cluster/unit naming scheme:
asn = role_base + (cluster_number * 100) + unit_number

For three-letter ASCII naming (rack = ‘abc’):
def get_lettercode(char): return ord(char) - 97

asn = role_base + (get_lettercode(rack[0]) * (26^2)) +
 (get_lettercode(rack[1]) * 26) +
 get_lettercode(rack[2])

ROUTING POLICY

• OSPF area aggregation can break in BGP Clos model due to lack
of horizontal interconnects; you’ll likely need to leak in rack more-
specifics (at least to Cluster and Fabric)

• /31|/127 linknets should be aggregated by device, or left out of
BGP table entirely.

SPINE1

CL1-2
10.10.0.0/20

CL2-2
10.10.0.0/20

TOR1-1
10.10.1.0/24

TOR1-1
10.10.2.0/24

SPINE: 10.10.1.0/24: ECMP to CL1-2, 2-2
CL1-2: 10.10.1.0/24 NH to TOR1-1

CL2-2: 10.10.0.0/20 to Null0

ROUTING POLICY TIPS

• Generate default route to Fabric from DC edge (for DC egress
only).

• If TORs can’t take full table: float aggregates in addition to more-
specific prefixes to protect from loss of default route.

• Across EBGP neighbors, LPREF is not transitive. Policies that
manipulate LPREF must match on all devices.

• Enable BGP advertise-inactive until OSPF is completely removed.
• Implement GSHUT support (but don’t strip community inside DC).

AUTOMATION

• No reasonable way to
manage this transition
without robots configuring
the devices!
• Discover Current State
• Generate new

Configurations
• Deploy configuration

updates
• Audit peerings and

routes

AUTOMATION STEP 1: DISCOVER

• For each device we need:
• Platform/code version
• Role
• Router ID
• Neighbor address, ASN, role data

• BGP configs reference neighbors which must be learned from
existing state:
• Walk device LLDP data
• Store linknet addresses, find matching /31s

Discover should run on an ongoing basis, tracking changes

AUTOMATION STEP 2: GENERATE

• Device type/code/role points to templates - keep
configurations consistent across roles (common baseline, vary
only if needed)

• Easier to separate out baseline BGP policy configuration from
neighbor configuration templates

• Only filter routes as needed to avoid scenic routing or using
Clusters as transit. Avoid localpref changes if possible.

• IMPORTANT: Build templates for rollback too!
• Jinja2 was our choice of template frameworks

AUTOMATION STEP 3: DEPLOY

• Config push scripting, built framework to track progress of
devices

• It’s OK to go slow. Deployed configs to 2-3 devices in parallel
over a number of days, in 100-device batches

• You don’t want to be watching a script run all day, so build
passive notifications (syslog, chatbot status notifications).

• Active notifications on errors only and batch run completion

AUTOMATION STEP 4: AUDIT

• Verify matching OSPF neighbor relationships to BGP peering.
Some downed peers are inevitable, but OSPF neighbor should
be down as well.
• Most common reason for failed peers: control plane ACLs not

permitting tcp/179
• Compare OSPF and BGP Tables; check for discrepancies (you

inevitably will have differences due to policy changes). Make
sure all items are understood.

• For routes unique to one protocol, compare NH of covering
route in the other protocol, verify no changes. If differences are
present, make sure you understand why the change is there.

PROTOCOL CUTOVER

• Deactivate or De-Prefer OSPF? We did some of both.
• Deactivate Cluster-TOR neighbors (can cause traffic swings due

to OSPF route preference; be ready for that). Easiest to do in
blocks of racks from the Cluster device.

• Lower (raise numerically) route preference on cluster/fabric/
edge after all Cluster-TOR traffic is routed via BGP

• Don’t be afraid to space this out. Both protocols can coexist.

MINIMAL IMPACT

• We did have the luxury of multiple DCs, apps could fail between
sites during riskiest changes.

• Went slow and carefully, especially with Cluster-TOR OSPF
deactivations

• One very sensitive app (that couldn’t be moved) requested that
we disable OSPF on all of their racks at once. Result: one
minute of SR impact vs. prolonged low-level instability

• Lots of communication - app teams knew what we were doing,
why this was important, didn’t push back on requested DC
failover windows

BONUS: CPU SAVINGS

MISTAKES WERE MADE
• Lab testing is no guarantee of a seamless prod rollout. Canary

early and often.
• Many steps could have been further automated, but would have

delayed deployment timeline. Froze dev work at “good
enough”.

• Ops documentation/runbooks fell behind deployment -
Document first then deploy!

• One user-impact incident due to migration, due to incorrect
information on apps running in cluster being converted

• GSHUT support not fully implemented in first iteration, had to
retro policy change to many TORs.

MISTAKES WERE MADE (CON’T)
• Original design didn’t filter paths where Clusters were used as

transit. Resulted in ECMP explosion as we added more clusters.

SPINE1 SPINE2 SPINE3 SPINE4

CL1-2CL!-1 CL2-2CL2-1 CL3-2CL3-1

TOR1-1 TOR1-2 TOR1-3 TOR1-4

TOR2-1
10.20.0.0/24

TOR2-2
10.20.1.0/24

TOR2-3
10.20.2.0/24

TOR2-4
10.20.3.0/24

TOR3-1 TOR3-2 TOR3-3 TOR3-4

Spine 3 Route to TORs in CL2: ECMP Through Every Other Cluster Switch!

SPINE3 sees routes to TOR2-x as ECMP through every other cluster switch!

M A R K E T I N G W I T H T W I T T E R

A U T O S
@ T W I T T E R H A N D L E

THANK YOU!

