National Institute of N INFORMATION Ny)
Standards and Technology 438 - TECHNOLOGY (*2 AntaraTek
U.S. Department of Commerce 4 LABORATORY \

High Performance BGP Security:
Algorithms and Architectures

Mehmet Adalier, Kotikalapudi Sriram,
Oliver Borchert, Kyehwan Lee, Doug Montgomery

Email: madalier@antarateknik.com; ksriram@nist.gov

Acknowledgements: Randy Bush, Il1J

NANOG-69, February 2017, Washington DC

Antara Teknik LLC contribution to this work was supported by the National Institute of Standards and
Technology (NIST) under an SBIR cooperative agreement 70NANB14H289. NIST’s research was supported
by the Department of Homeland Security under the Secure Protocols for the Routing Infrastructure (SPRI)

program and the NIST Information Technology Laboratory Internet Infrastructure Protection Program.

BGP Vulnerabilities

Border Gateway Protocol is vulnerable to malicious attacks that
target the control plane

* Prefix/sub-prefix hijacks

— Steers traffic away from legitimate servers
* Prefix squatting

— Hijacks a not-in-service prefix and sets up spam servers
e AS path modification (Man-in-the Middle) attacks

— Modifies AS path causing data to flow via the attacker
* Route leaks

— Announces routes in violation of ISP policy, thereby
redirecting traffic via the attacker

The exploitations commonly result in DoS, spam, misrouting of
data traffic, eavesdropping on user data, etc.

Objectives of the IETF SIDR WG Security Solution

Verify that the originating AS shown in the announcement is
authorized to originate the prefix [RFC 6811]

Verify that the BGP announcement did indeed traverse a sequence
of ASs as shown by AS path in the announcement -- BGPsec [1]

Provide protection from withdrawal suppression and malicious
replay attacks [4]

Accommodate special cases such as:
— Transparent Route Servers (RS) at Internet Exchange Points (IXP)
— An AS confederation must be visible externally as a single public AS

Provide route-leak detection capability (as best as possible) [5]

IETF/IESG recently approved “BGPsec Protocol Specification” draft
as Proposed Standard.

https://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-22

Key Elements of the Security Solution

Hierarchical certificate chain for resource allocations

— IP address blocks (prefixes)

— Autonomous system numbers

Resource PKI (RPKI) repository

Prefix owner signs a Route Origin Authorization (ROA)
authorizing an AS to originate one or more prefixes

— ROA: {ASN; Prefixl, maxLengthl; Prefix2, maxLength2}
Each BGPsec speaker uses its private key to sign updates it is
propagating to its peer AS

Receiving router validates the origin using ROA information
Receiving router also performs path validation by verifying the
AS path signatures in updates

RPKI provides provenance and integrity.

AS Path Protection:
Basic Principle of BGPsec AS Path Signing

|

BGPsec Update:

I

I

I I

I I

I I

p, (T=AS2*) AS1, SIG1-2 I

|
|
|
|
|
|
|
|
p, (T=AS3*) AS2, AS1, SIG2-3, SIG1-2 |
|

|
|
|
|
|
p, (T=AS4*) AS3, AS2, AS1, SIG3-4, SIG2-3, SIG1-2 |
|

p, (T=AS5%*) AS4, AS3, AS2, AS1, SIG4-5, SIG3-4, SIG2-3, SIG1-2

Route Origin Authorization (ROA): (10.1.0.0/16, AS1, maxlength=18)
ROA is a signed object; stored in RPKI repository

* Next hop AS (Target AS) signed over but not carried in the

Note: For the precise BGPsec update format and details, see BGPsec specification
https://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-22

BGPsec_Path Attribute Format

Secure_Path Length

pCount-n

Flags-n

ASN-n : _--- Secure_Path

pCount-1

Flags-1

ASN-1 _ h ib
Signature_Block Length) >§GPS€C_Pat attrioute

ALGORITHM SUITE ID

SKI-n

Signature-nlength | | | ___- Signatu re_BIOCk

Signature-n . . &~

(2nd Signature_Block

SKI-1 used during algorithm

ignature-1 Length it
Signature-1 Leng transition)

Signature-1 L _—

e pCount is AS prepend count; pCount =0 for transparent route server
e Flags: Confed Flag set to indicate inter-AS hop within an AS confederation

BGPsec Compute Resource Estimation

 BGP router receives approx. 680K prefixes [9] from
each of its transit ISPs with an average path length

of approx. 4 hops [8]
* |nternet contains about 55K ASs [8]

* Atypical BGPsec router:

— Verifies on average four signatures per supported
algorithm, per update (two supported algorithms are
allowed)

— Generates one new signature per supported algorithm,
per update

BGPsec Compute Resource Estimation (cont.)

* For Update Signing: Each AS will need at least one
signing (private) key per supported algorithm...
— Worst case: private key per router
— Must be maintained securely (per NIST SP800-130,
Confidentiality and Integrity)
* For Update Validation: an average of four public keys
per supported algorithm need to be loaded

— Public key retrieval includes public key database access
and ECC Public-Key Validation (per NIST SP800-56A) per
key

— Caching helps

BGPsec Path Sign Ops

Path

Algorithm 1
Sign Operation

Algorithm 1
Signature (r,s)

T'f‘

ASN1 Encode
Operation

Algorithm 1
Signature

Algorithm 2
Signature

One Time Privat Domain
Secret rivate Parameters
Number Key
Path
Algorithm 2
Algorithm 2 Signature (r,s)
> Sign Operation
1\ A
|
One Time Privat Domain
Secret rivate Parameters
Number Key

ASN1 Encode
Operation

Algorithm 1

Segment 1 Encoded
Signature

ASN1 Decode
Operation

BGPsec Path Validate Ops

Path
Segment 1

|

Verify Status

Verify Status
Algorithm 1 Segment 1 Segment n
Algorithm 1 Verify Operation
Signature (r,s)
for Segment 1 T T
Sending Domain
AS’s Public Parameters
Key (Algo 1) for Algo 1 AND
Verify Status Path
Algorithm 1 Path Verify
Algorithm 2 Status
OR —
Segment 1 Encoded
Signature
Verify Status Path
Path Algorithm 2
ASN1 Decode Segment 1
Operation ‘l' AND
| Algorithm 2
Algorithm 2 Verify Operation "
Signature (r,s) Verify Status
for Segment 1 T T Segment 1 Segment n
Sending Domain
AS’s Public Parameters
Key (Algo 2) for Algo 2

Verify Status

Algorithm 1
Segment n Encoded
Signature
Path
Segment n ASN1 Decode
i Operation
Algorithm 1
Verify Operation Algorithm 1
Signature (r,s)
for Segment n
Sending Domain
AS’s Public Parameters
Key (Algo 1) for Algo 1
Algorithm 2
Segment n Encoded
Signature
Path
Segment n ASN1 Decode
i Operation
Algorithm 2 I
Verify Operation .
yop Algorithm 2
Signature (r,s)
for Segment n
Sending Domain
AS’s Public Parameters
Key (Algo 2) for Algo 2

10

Optimizations

Multi-level Optimizations are required to maximize performance

— System Level Optimizations

* Asynchronous operations across cores

* Parallel multi-segment path verifications

* High Integrity Public key management system
— Algorithmic Optimizations

e Early termination on Invalid segment (BGPsec Algorithm)

* Pre-calculations for ECDSA sign Operation (ECDSA Algorithm)
— Group Level Optimization

» Ultra fast, secure Point Multiplication (e.g., Side Channel Attack (SCA)
Resistant Fixed-base NAF Windowing Method for Point Multiplication)

— Field Level Optimizations

» Special forms of domain parameters (e.g., Generalized Mersenne
Primes)
* Barrett Reduction modulo p and/or Montgomery w-by-w modulo

Optimizations must maintain and enhance the security of the
implementation under all use-cases

11

Example Algorithmic Optimization

Observation:

ECDSA Sign

Generate k and k1"
Compute R = kG

=, Compute r = X, modn

Compute H = Hash (M)

Convert the bit string H
to an integer e : where

e = 2/—/“:1) QH-i * bi,
s=(k1*(e+d*r)) mod
n

Return (r, s)

The most compute intensive ECDSA
sign calculations do not have any
dependency on the “message” to be
signed

Options:

1. Pre-compute r and “safely” store

2. Asynchronously compute r on a
different core

3. Proprietary methods

Considerations:

e Secure implementations are not
trivial

Substantially reduces sign op latency

12

Example Group Level Optimizations

Pre-Calculation:

Take (Ky_,, -
representation of k,

where d =[(m/w)], then
kP =31 K(2¥ P)
For each i from O to d-1,

pre-calculate j number of points,
where

j=(2w*1-2)/3 if wis even;
j=(2w*1-1)/3 if wis odd

. K, Ko)," as the base 2%

Evaluation:

INPUT: NAF(k), d, pT (Pointer to pre-
computed data table)

OUTPUT: A = kP.

1. Evaluation: A&<O

2. ForifromOtod-1do
2.1 SafeSelect (Pi),

use Ki=j to choose the
appropriate P[i][j] from
Ptable (handle <)

2.2 AEA+Pi
3. Return(A)

Traditional Right to Left Binary

Method for Point Multiplication
Evaluation time: (0.5m)pA + (m)pD
P-256 Eval. time: 128pA + 256pD
Not SCA resistant

Fixed-base NAF Windowing Method for
Point Multiplication
Evaluation time: (0.5m)pA + (m)pD
P-256 Eval. time: ~“64pA
SCA resistant

m: number of bits; pA: multi-precision point addition; pD: multi-precision point double

* One of the fastest available libraries for ECDSA P-256 and P-384 operations

taraEcCRYPT™ Performance

®* Thread-safe dynamic library
* Single core performance numbers are captured with a standalone utility to show

the best possible rates

tara EcCRYPT-3 P-256

tara EcCRYPT-3 P-384

ECDSA Ops Rate (ops/sec) Rate (ops/sec)
Sign Operation with provided Hash 46,191.83 19,433.85
Sign Op including Hash gen Op 40,076.27 18,163.09
Sign Op including Hash gen Op, but using 48,257.51 21,287.04
pre-calculated random-number
Verify Op with provided Hash 32,895.25 10,954.57
Verify Op including Hash gen Op 29,521.49 10,706.65

System used for all test results:
Intel® Xeon® CPU E3-1285 v4 at 3.5GHz; 16GB Memory; Centos 7; gcc 5.2

Test results on single core; Hyper-threading and Turbo features turned off;, Nominal message size 1024 bytes

14

openSSL vs. taraEcCRYPT™ Performance

50,000
45,000
40,000
35,000
30,000
25,000
20,000

Operations per second

15,000
10,000
5,000
0

OpenSSL1.1.0
M taraEcCRYPT-3

%

77

7

ml

(With provided

SignP256 VerifyP256 SignP384 VerifyP384 hashin all cases)

System used for all test results:

* Intel® Xeon® CPU E3-1285 v4 at 3.5GHz; 16GB Memory; Centos 7; gcc 5.2
® Test results on single core; Hyper-threading and Turbo features turned off

15

taraBGPsec™ Path Sign Performance

* Measured operation includes:
» Assembly of the BGPsec Path data to be signed
» Hash of path data
» Execution of Path_Signature operation using ECDSA P-256 or P-384
» ASN1 encode of signature(s)

* On a single core using taraEcCRYPT Sign with pre-calculated
random-number:

» P256 Path sign performance is over 40k signatures/sec

» P384 Path sign performance is over 20k signatures/sec

* Given current performance levels, multi-core parallelization may not be
needed to sustain a high number of signature operations.
» However, proper random numbers can be pre-calculated
asynchronously on any available core

Same system utilized to
generate the test results as
on slide #15.

16

taraBGPsec™ Path Verify Performance
Measured operation includes:

® BGPsec related parsing of update packets

* Fetching public keys with assured integrity
* Execution of Path_Segment_Verify operations (taraVerifyParallel)
v’ Early termination if any Segment of the path is found to be Invalid
v Two signature algorithms (P-256 and P-384) can be supported

ECDSA P-256

SIGNATURE SEGMENT VERIFY
SPEED (OPS/S)

CORES 1

480
24649

2

77972
59712
39
3 4

Same system utilized to
generate the test results as
on slide #15, except the
number of cores is varied.

17

BGPsec Contribution to Convergence Time

BGPsec update processing is Additive to
Traditional BGP processing

oo Convergence time ~=-~---- >

Traditional BGP BGPsec

* Best path selection * Parsing BGPsec update

* Peering policies * Data assembly for hashing
* Route filtering * Fetching public keys
* RIB management, e Signature verification

etc. * Signing to peers

We focus here on the incremental CPU cost due to BGPsec

18

BGPsec Verify / Sign Speed (Updates/s)

100,000
s Xeon® CPU E3-1285 v4 3.5GHz
c
(@) 40,000
O L = = = = = = = = L]
o
= s -=-Sign only
Q. \.1&325 -= Verify only
8 10.000 N 8216
@ ’ = 6162
g = 4930

‘= 4108

2 Tm . 3921 35
o ~ u—2739 2465
o |
wd
®
2
- 1,000 T T T T T T T T

1 2 3 4 5 6 7 8 9 10
AS Path Length (#Sigs in BGPsec Update)

* taraBGPsec
e Xeon® CPU E3-1285 v4 3.5GHz (using only one core)

Validation Cost Model

BGPsec

» taraBGPsec

I . . BGPsec -
.)E(§o1n2CI:)3 §P4U w Peering % Peering
- vV —— ——
P
3.5GHz L
(using only -
one core) .
\ II
\
! \ ISP Cand C’s
ISP A and A’s ' !
Customer Cone ! Customer Cone
(Large Global ISP) / v (Large Global ISP)
: I AS path |# Prefixes | Processing
AS path |# Prefixes | Processing .
) length |announced | time (sec) .
length |announced | time (sec) 1 620 0.0252 CPU Time
CPU Time on 1 1353 0.0549 5 16028 1'3005 on R if
R if Session 2 21586 1.7515 3 9434 1'1482 Session to C
to A is Reset 3 6820 0.8301 . is Reset
4 1627 0.2640 4 2922 0.4742
5 942| 0.1911 > 435 0.0882
6 a5 0.0110 6 46 0.0112
7 14 0.0040 7 15 0.0043
8 6 0.0019 8 27 0.0088
Total (seconds) 3.11 9 1 0.0004
Total (seconds) 3.06

20

Need not Sign To Stubs

a Transit-X Transit-Y a

BGP-4 BGP-4

Receives Unsigned &
Trusts Up-streams
to Validate

BGPsec

Signs Own
Prefix(es)

BGPsec

Signs Own
Prefix(es)

Only needs to have appropriate ROAs registered
and own Private Key;
No other crypto or RPKI data
No Hardware Upgrade!!

21

What Fraction are Stub ASs”?

35000 [~ ;,,j;jifr;;;;ff T

30000 ;' lNon-Stu s
—u Stubs

For all years, 84% of all
7 ASs were Stubs |
5000 | :
O — *—-'_—“*-—.
2001 '
2002
2003 »0p4 2005 5006 '

2007
2008
Year 2009 5010

N N
o wn
o o
o o
o o

15000

Number of ASs

10000

CPU Cost for Validation and Signing

ISP A and A’s
Customer Cone
(Large Global ISP))

BGPsec

BGPsec

Peenng;f'"

/

e R peers with 3 non-
stub BGPsec peers

e R’s other peers are
stub ASs

AS path |# Prefixes | Processing |/

length [announced | time (sec)
1 1353 0.16
2 21586 3.37
3 6820 1.34| CPU workload on R, . taraBGPsec
4 1627 0.39] including Validation . Xeon® CPU
5 942 0.26 & Signing, if E3-1285 v4
6 a5 0911 session to A is 3.5GHz (using
7 14 0.01 only one core)
g " 0.00| reset.

Total (seconds) 5.54

23

Conclusions

* Industry leading high performance BGPsec
implementation architected and algorithmically
optimized

e Other factors expected to contribute to efficient
BGP/BGPsec convergence in future:

J Multi-threading and use of multiple cores in
route processors

[Update processing optimizations, e.g. caching
results of verification

. Enhanced Graceful Restart [10]

24

Thank you.

Questions?

10.

11.

References

M. Lepinski and K. Sriram, “BGPsec Protocol Specification,”
https://datatracker.ietf.org/doc/draft-ietf-sidr-bgpsec-protocol/

M. Adalier, “Efficient and Secure Elliptic Curve Cryptography Implementation of Curve P-256,” NIST
Workshop on ECC Standards,
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/papers/session6-adalier-mehmet.pdf

OpenSSL: Cryptography and SSL/TLS Toolkit, https://www.openssl.org/

R. Gagliano, K. Patel, and B. Weis, "BGPsec Router Certificate Rollover", draft-ietf-sidr-bgpsec-rollover-05
(work in progress), March 2016. https://tools.ietf.org/html/draft-ietf-sidr-bgpsec-rollover-06

K. Sriram, D. Montgomery, B. Dickson, K. Patel, and A. Robachevsky, "Methods for Detection and
Mitigation of BGP Route Leaks," draft-sriram-idr-route-leak-detection-mitigation-04, July 2016.
https://datatracker.ietf.org/doc/draft-ietf-idr-route-leak-detection-mitigation/

K. Sriram and Randy Bush, "Estimating CPU Cost of BGPSEC on a Router," presented at the RIPE 63,
November 2011. https://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf

K. Sriram, D. Montgomery, and R. Bush, "RIB Size and CPU Workload Estimation for BGPSEC," Presentation
at the IETF-91 Joint IDR/SIDR WG Meeting, November 2014.
https://www.ietf.org/proceedings/91/slides/slides-91-idr-17.pdf

Measurements on AS paths, http://bgp.potaroo.net/as6447/

Measurements on routed IPv4 and IPv6 prefixes and growth rates, http://bgp.potaroo.net/v6/v6rpt.html

K. Patel, E. Chen, R. Fernando, and J. Scudder, “Accelerated Routing Convergence for BGP Graceful
Restart,” https://datatracker.ietf.org/doc/draft-ietf-idr-enhanced-gr/

A. Lambrianidis and E. Nguyenduy, “Route server implementations performance,” 20t Euro-IX Forum,
Amsterdam, NL, April 2012.
https://ams-ix.net/downloads/ams-ix-route-server-implementations-performance.pdf

26

Backup Slides

Example Field Level Optimizations

* Multi-precision regular/constant time add and subtract modulo
prime ops are best implemented in x86-assembly

— Any Carry or Borrow is easily detected

— Handled by instructions such as “adcq” and “sbbq”
* Optimized multi-precision multiply and square operations are a

must for high performance

Traditional 64-bit multiply in x86

mov OP, [pB+8*0]
mov rax, [pA+8*0]
mul OP

add RO, rax
adcrdx, O

mov TMP, rdx
mov pDst, RO
mov rax, [pA+8*1]
mul OP

mov RO, rdx

add R1, rax

adc RO, 0

add R1, TMP

adc RO, O

mov rax, [pA+8*2]
mul OP

mov TMP, rdx
add R2, rax

adc TMP, 0

add R2, RO

adc TMP, O

64-bit multiply with Broadwell Inst.

XOr rax, rax mulx T1, R’'1, [pA+8*2]
mov rdx, [pB+8*0] adox R’1, R2
adcx R3, T1
mulx T1, T2, [pA+8*0] ...
adox RO, T2
adcx R1, T1

mov pDst, RO

mulx T1, R’0, [pA+8*1]
adox R0, R1
adcx R2, T1

28

