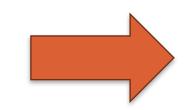


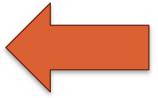

Rolling the Root Zone DNSSEC Key Signing Key Edward Lewis | NANOG 68 | October 19, 2016

edward.lewis@icann.org

Motivation for this talk

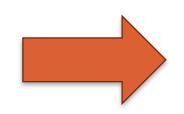
- ICANN is about to change an important configuration parameter in DNSSEC
- For a network operator, this may create a need for action
- This discussion is meant to inform: Why this is happening, what is happening, and when
 - Highlighting: the availability of project plan documents



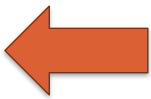


DNS for Those Who Don't Like Protocols

What is the IPv6 address for www.example.com.?



www.example.com. is 2001:db8::


DNSSEC for Those Who Don't Like Protocols

What is the IPv6 address for www.example.com.?

www.example.com. is 2001:db8::

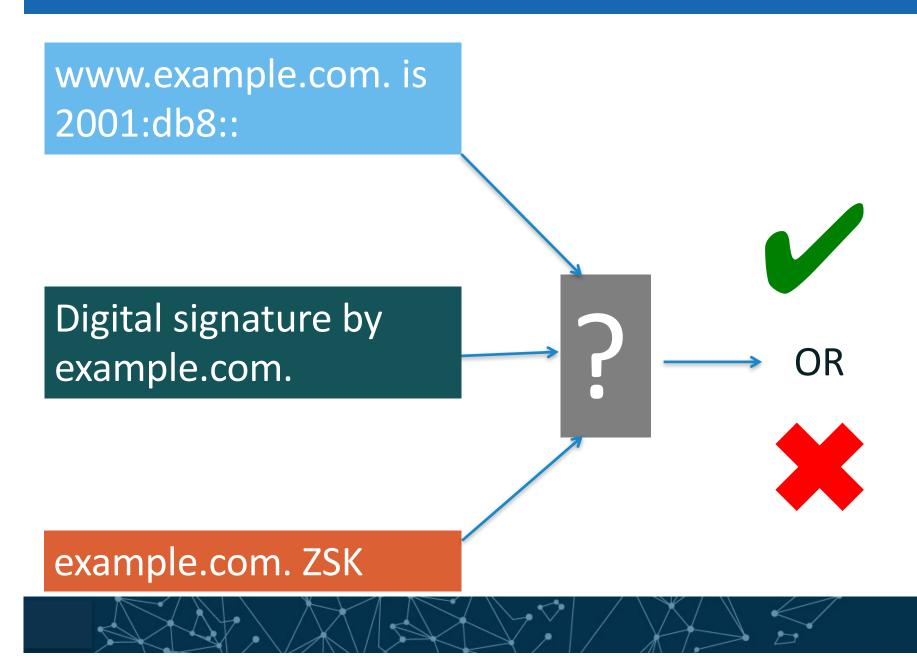
Digital signature by example.com.

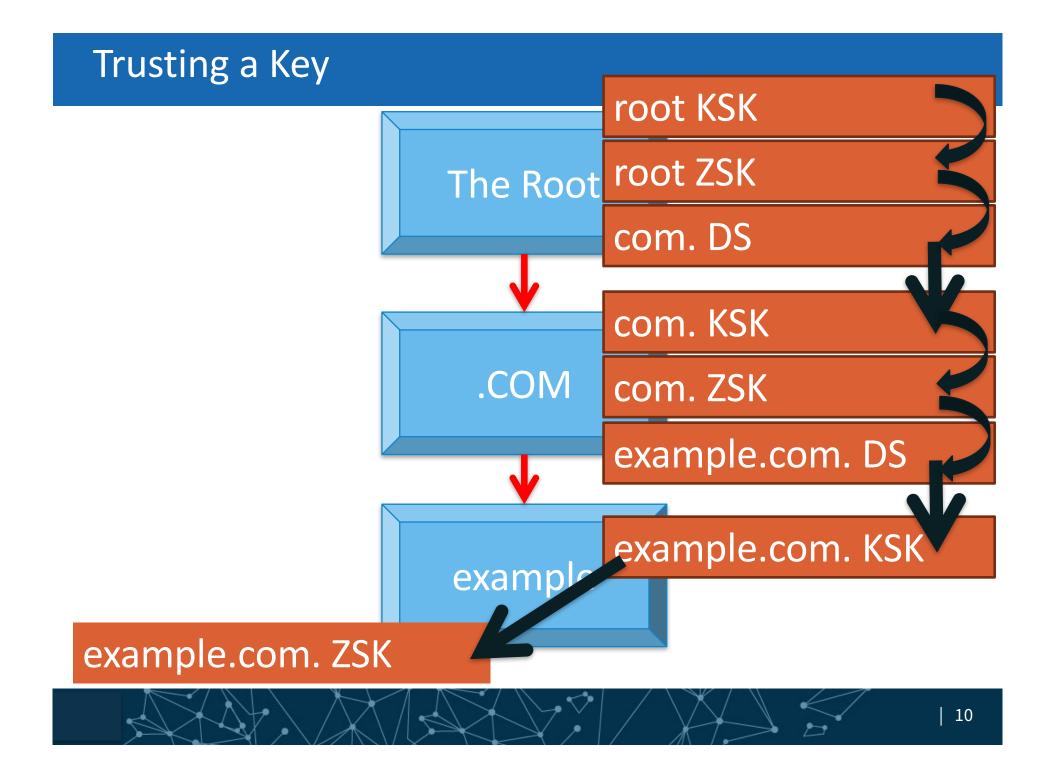
What is DNSSEC Validation?

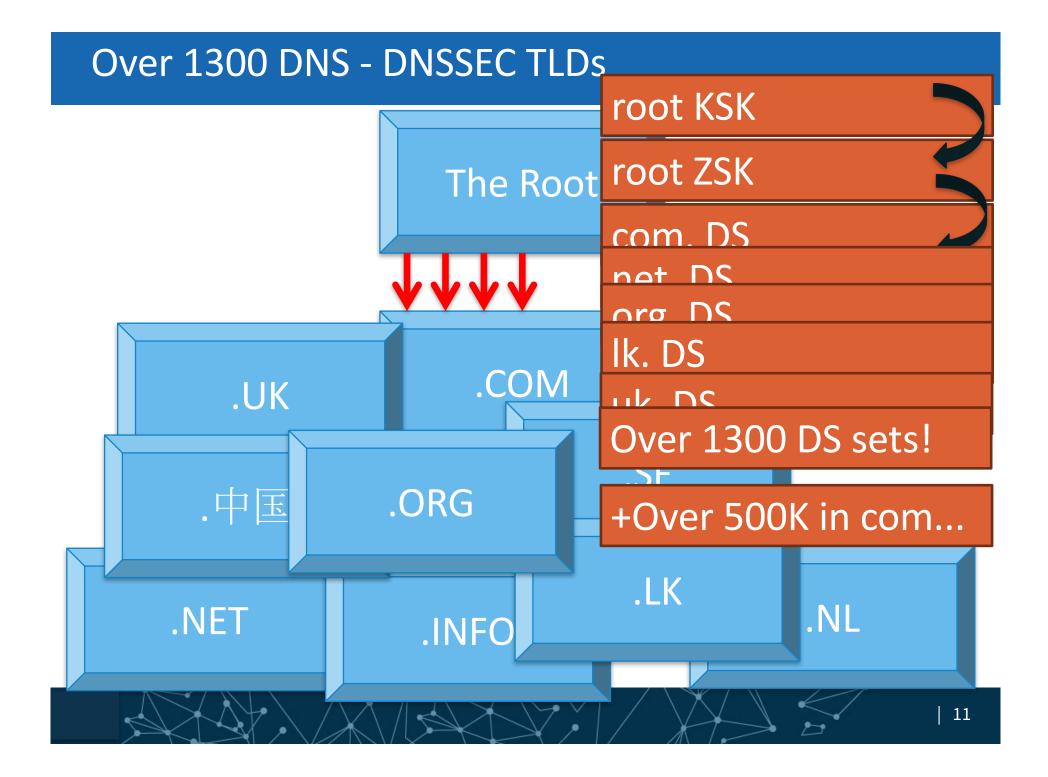
- Validation includes the process of inspecting the digital signature and the data to verify the answer is the appropriate one
 - The signature and data need a public key, a chain of keys, and a trust anchor
 - Software tools today can do this when configured
- Validation is more than a cryptographic check
 - Is the answer related to the question?
 - Is the answer "fresh", replayed, and so on?

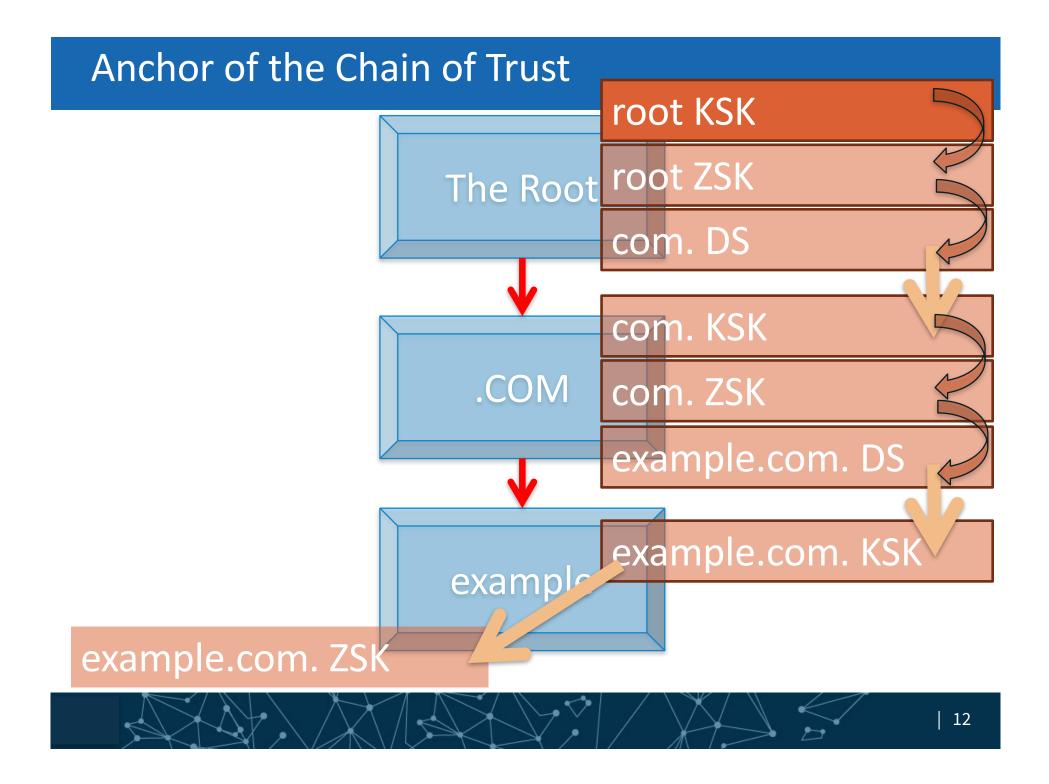
Why Bother?

- Why bother?
 - The DNS protocol is gullible, easily fooled
 - Forged answers in DNS can result in misdirected traffic
 - Protect your DNS service, protect customers
- Validation is "self-protection"
- With DNSSEC as a base
 - Extensions to secure email transfer (stop spam)
 - Supplement to X.509 Certificate operations




Roles of Keys in DNSSEC


- DNSSEC has three kinds of records that, in some loose definition, hold cryptographic key data. The records exist because of the use of the data or "role"/"job"
 - KSK Key Signing Key, produce signatures of keys
 - ZSK Zone Signing Key, produces all other signatures
 - DS Delegation Signer, a "pointer" to a key
- This was supposed to simplify DNS operations!



Crypto-checking a Signature

What is a Trust Anchor?

- Besides being the "top" of any DNSSEC validation process?
- A trust anchor is a key that an operator places full faith and trust into for the purposes of verifying responses
 - It could be implicitly trusted because it came with the software
 - It could be explicitly trusted via due diligence examination

Is the Root Zone KSK *the* Trust Anchor?

- Maybe
- It's really up to you
- By convention, there's a unique root zone, it has a KSK, for the global public Internet operated by ICANN
- By default, DNSSEC validation tools come configured with that KSK as *the* trust anchor
- But a user of the tools can add other trust anchors

| 15

DNSSEC in the Root Zone

- DNSSEC in the Root Zone is managed by:
 - ICANN, responsible for operating the root KSK
 - Verisign, responsible for operating the root ZSK
- Operating the KSK
 - KSK lifecycle management, "sign the ZSK"
- Operating the ZSK
 - ZSK lifecycle management, "sign the root zone"
- Activities are coordinated but operated separately

Current Root KSK

- The current root KSK was created in 2010
 - Stored in Hardware Security Modules in two Key Management Facilities
 - The operations surrounding the key is an entirely different talk

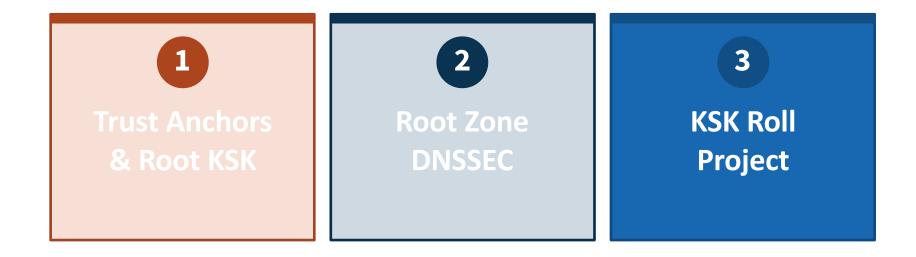
Getting the Root KSK (Public portion only!)

- Via the DNS
 - As reliable as the data in unprotected DNS
 - (Works if you not subject to an "attack")
- Via the Web
 - https://data.iana.org/root-anchors/rootanchors.xml
 - Secured by an X.509 certificate and signature
- Via other means
 - Code
 - Presentations, t-shirts, friends
 - Always remember to check the legitimacy!

Changing the Root KSK

- There is a plan in place to change the root KSK
 - For the first time
- This plan is precedent setting
 - Because it involves an uncountable roster of participants and impacted parties
 - When ICANN changes the KSK on our end -
 - Anyone who (anonymously) relies on it has to change a configuration on their end
 - No one can list all those involved unless something goes wrong

Why (rock the boat)?


- Good cryptographic hygiene
 - Secrets don't remain secret forever
- Good operational hygiene
 - Have a plan, complete enough to execute
 - Exercise the plan under normal circumstances
- Why not a private test?
 - The change of the KSK involves everyone doing DNSSEC validation on the Internet, service operators, software producers

Bottom Line

- Changing the root KSK will impact just about all DNSSEC validations
 - If the trust anchor is "misconfigured" (i.e., the wrong key) DNSSEC will reject legitimate responses
 - To anyone or any process relying on DNS, it will appear that the desired data is unavailable, website is unreachable, "the Internet is down"
- There's a broader topic of trust anchor maintenance, but that is for another time

The KSK Rollover Project and Network Operators

- The project is meaningful to you if you are performing DNSSEC validation
 - Geoff Huston stats: steady 15% world wide
 - DNSSEC signing is not affected
- If you are validating it's time to revisit configurations and processes
 - A root KSK roll hasn't happened before, it's new to all of us

• The KSK Rollover Plan Documents

- Available at: <u>https://www.icann.org/kskroll</u>
 2017 KSK Rollover Operational Implementation Plan
 2017 KSK Rollover Systems Test Plan
 2017 KSK Rollover Monitoring Plan
 2017 KSK Rollover External Test Plan
 2017 KSK Rollover Back Out Plan
- We encourage interested folks to given them a read

Overview of Project Plans

- Plans say On October 11, 2017 a new KSK will go into use and the current KSK retired
 - On this day, if preparations haven't been made, trouble will ensue
- Plans include
 - Retaining the current cryptography settings
 - Following Automated Updates of DNSSEC Trust Anchors
 - Fitting the roll into normal maintenance events
 - Testing and monitoring

The Project's DNS Response Size Concerns

- Significant DNS responses will grow to 1425 bytes during the project
- Experimentation, especially in IPv6, suggests this might be a concern despite empirical evidence to the contrary
- How to avoid potential problems
 - Where UDP is allowed to port 53, also allow TCP
 - Refrain from filtering DNS messages based on size

IPv6 fragmentation and DNS

- IPv6 fragmentation is done by the sender with intermediate nodes using ICMP to indicate a fragment as being "too big"
 - By the time the DNS sender gets the ICMP, DNS has forgotten what it had sent
- From Geoff Huston experiments and analysis
 - http://www.potaroo.net/ispcol/2016-05/v6frags.html
 - TCP over IPv6 use an MTU of 1,280 bytes
 - UDP has marginal advantages with using larger MTU, "but"

Dates to Watch

- September 19, 2017
 - The root zone DNSKEY set will increase to 1414 bytes for 20 days, prior to that date 1139 bytes has been the high water mark
- October 11, 2017
 - On this date the root zone DNSKEY set will be signed only by the new KSK
- January 11, 2018
 - The root zone DNSKEY set will increase to 1425 bytes for 20 days

Trust Anchor Management

- How do you trust and configure?
 - Are trust anchors subject to configuration control?
 - Rely on embedded data in software?
 - Are DNSSEC validation failures monitored?
- Automated Updates of DNSSEC Trust Anchors
 - Most direct, reliable means for getting the key
- Negative Trust Anchor management RFC 7646
 - Protects against errors made by others

Tools & Testbeds

- We are working with DNS software and tool developers and distributors
 - Management/troubleshooting aids
 - Updates of bundled keys
- Testbeds for Code Developers
 - Automated updates: http://keyroll.systems/
 - Root zone model: https://www.toot-servers.net/
- Testbeds for Service Operators
 - I.e., using "off-the-shelf" parameters
 - Planned for end-of-2016

For More Information

- Join the ksk-rollover@icann.org mailing list:
 - <u>https://mm.icann.org/listinfo/ksk-rollover</u>

- Follow on Twitter
 - @ICANN
 - Hashtag: #KeyRoll

- Visit the web page:
 - https://www.icann.org/kskroll

Engage with ICANN

Thank You and Questions

Reach me at: Email: ksk-rollover@icann.org Website: icann.org/kskroll

linkedin.com/company/icann

youtube.com/user/icannnews

gplus.to/icann

weibo.com/ICANNorg

flickr.com/photos/icann

slideshare.net/icannpresentations

