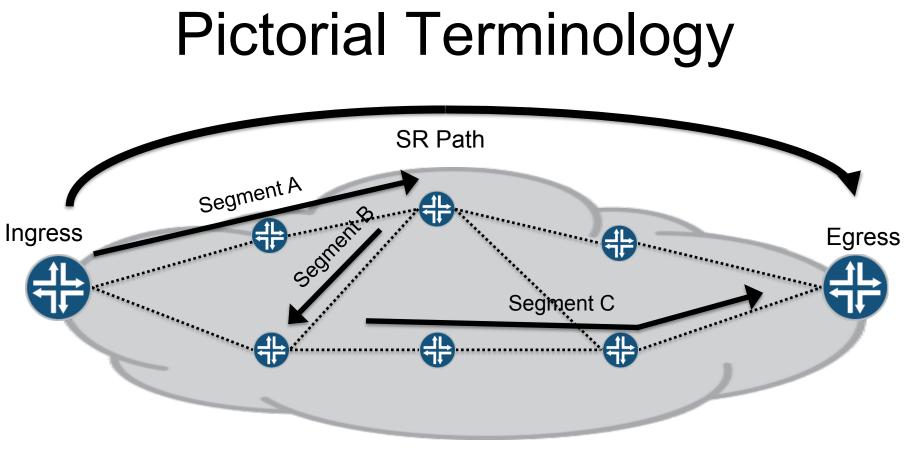
A Segment Routing (SR) Tutorial

R. Bonica NANOG70 June 6, 2017

AKA: SPRING

- IETF Standardization
 - Source Packet Routing In Networking (SPRING) WG
 - ISIS, OSPF, IDR and MPLS WGs

What is SR?


- A tunneling technology
 - Encapsulates a packet within a header
 - Forwards packet based upon encapsulating header
- A Traffic Engineering (TE) technology
 - Allows a router to steer traffic along an SR path
 - Path can be different from the least cost path
- Maybe more?
 - Innovative new applications to be discovered

Terminology

- An SR domain is a collection of SR capable devices
 - Roles: Ingress, transit, egress
 - May be mixed with non-SR-capable transit devices
- An SR Path
 - Connects an SR ingress to an SR egress
 - Can be different from the least cost path
 - Contains one or more *SR* Segments

More Terminology

- An SR Segment
 - Connects two points within the SR domain
 - Can traverse one or more router hops
 - Is represented by a Segment Identifier (SID)
- A Segment Identifier (SID)
 - Identifies the path fragment that the packet follows
 - Can have node-local or domain-wide (a.k.a., global) significance

SR Domain

SR TRAFFIC ENGINEERING

Traditional TE Approaches

- Encode path information in the packet
 - Packet header enumerates every hop in the path
 - No path information stored in the network
 - Example: IPv4 with Strict Source Routing Option
- Store path information in the network
 - Packet header contains exactly one path identifier
 - No further path information is encoded in the packet
 - Example: RSVP-signaled MPLS

Hybrid TE Approach

- Path is divided into segments
 - Segment contains one or more router hops
- Packet header enumerates each segment in the path
 - But it does not necessarily enumerate every node
- Network contains enough state to forward the packet through multi-node segments
- Examples
 - IPv4 Loose Source Routing Option
 - IPv6 Routing Extension Header
 - Segment Routing

The SR TE Approach

- SR defines multiple segment types
 - Some types traverse one router hop
 - Some types traverse multiple router hops
- SR header enumerates each segment in the path
 - But not necessarily each node
- Network contains enough information to route a packet through a multi-hop segment

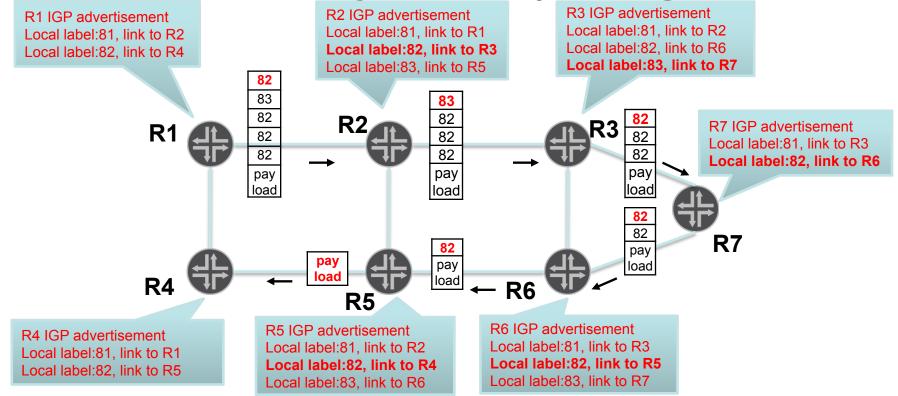
Basic Segment Types

- Adjacency (single router hop)
 - Represents an IGP adjacency
- Prefix (one or more hops)
 - Represents IGP least cost path to a prefix
- Anycast (one or more hops)
 - Represents IGP least cost path to a non-unique prefix
- Binding
 - Represents a tunnel (e.g., RSVP-signaled LSP)

Additional Segment Types

- Additional segment types are being proposed
 - Support new SR applications
- In this tutorial, we will focus on prefix and adjacency segments
- Gentle introduction to anycast and binding segments

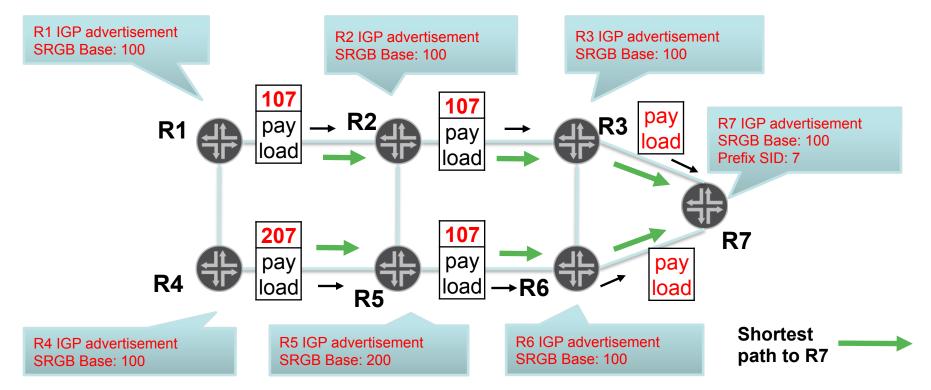
SR Encapsulation

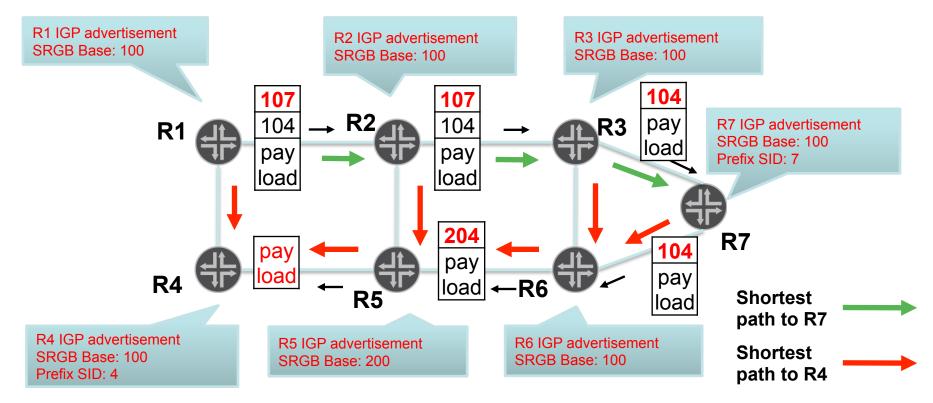

- MPLS
 - SR header is an MPLS label stack
 - Each label in the stack represents a segment
- IPv6
 - SR Header is an IPv6 header with a Segment Routing Extension Header (SRH)
 - SRH contains a list of IPv6 addresses
 - Each IPv6 address represents a segment

MPLS FORWARDING

Local Labels

- Some SIDs have node-local significance
 - Nodes automatically allocate local SIDs from a free pool
 - Nodes map local SIDs to local labels
 - No need for domain-wide co-ordination
 - Example: SIDs representing adjacency segments


R1-R4: Adjacency Segments

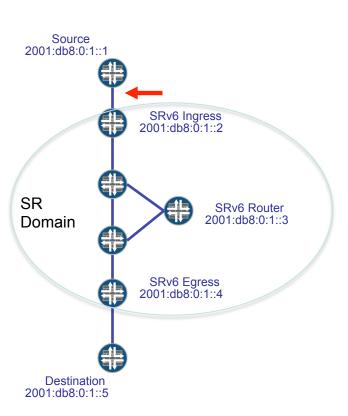

Global Labels

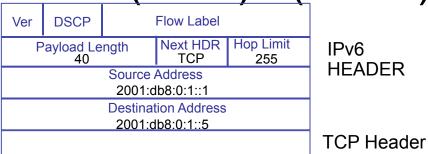
- Some SIDs have domain-wide significance
 - Domain-wide coordination required
 - SIDs are allocated in a manner similar to that used for private IP (RFC 1918) addresses
 - Example: SIDs representing prefix segments
- Each node reserves an SR Global Block (SRGB)
 - SID is an offset into this block
 - Global label equals SRGB base plus SID

R*-R7: Single Prefix Segment

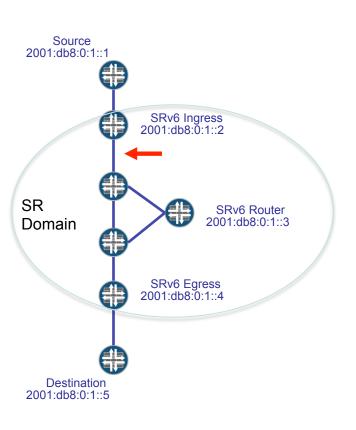
R1-R4 Via R7: Prefix Segment

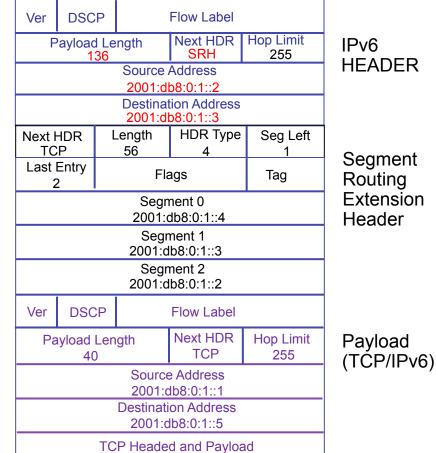
OAM

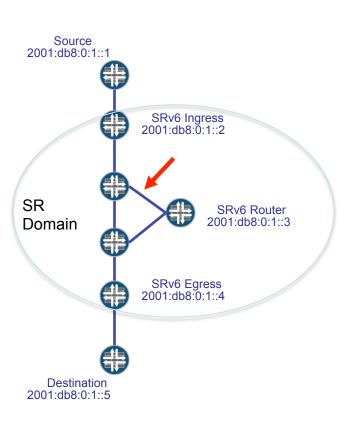

- MPLS Continuity Verification [RFC 6428]
- MPLS Loss & Delay Measurement [RFC 6374 & RFC 6375]
- MPLS Self-ping [RFC 7746]
- MPLS Ping [RFC 8026]
 - Ping Mode using NIL FEC
 - Trace mode if every router in path copies TTL on pop
- MPLS-aware trace [RFC 4950]
 - If every router in path copies TTL on pop

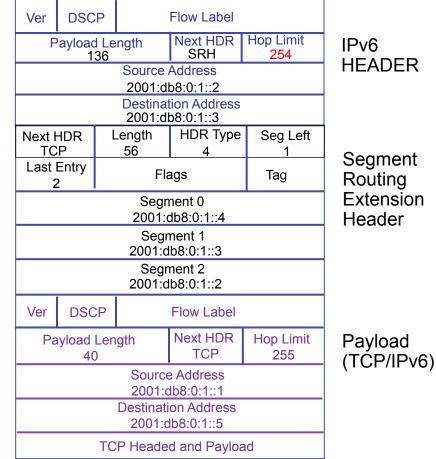

IPV6 FORWARDING

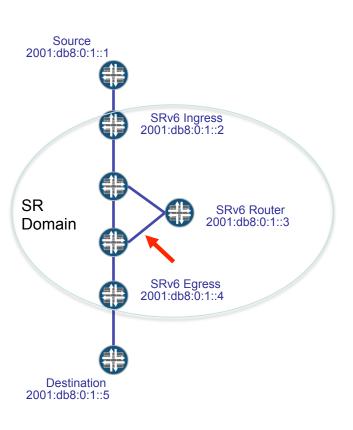
Modes


- Canonical modes
 - Source node includes a routing extension header between the IPv6 header and payload
 - SR ingress router encapsulates payload in an IPv6 header that includes a routing extension header
- Non-canonical mode
 - SR ingress inserts a routing extension header between the IPv6 header and payload
- In all cases, the routing extension header represents the SR Path

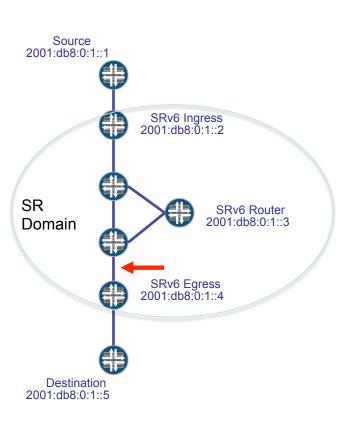

Segment Routing Header (SRH) : (1 of 6)

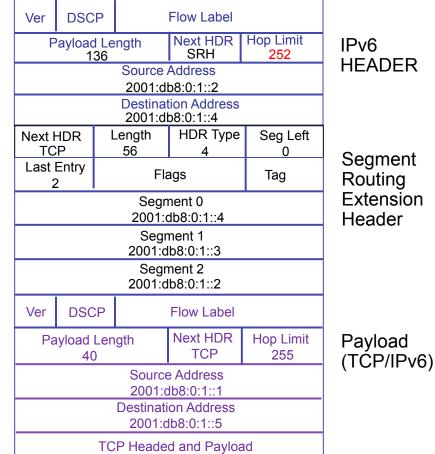


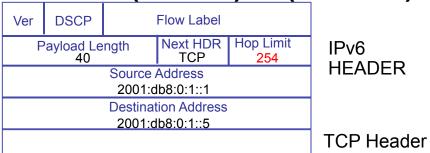

Segment Routing Header (SRH) : (2 of 6)



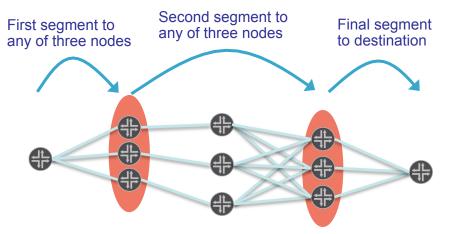
Segment Routing Header (SRH): (3 of 6)




Segment Routing Header (SRH) : (4 of 6)


Segment Routing Header (SRH): (5 of 6)

Segment Routing Header (SRH) : (6 of 6)



ADVANCED TYPES OF SID

Multiple Points of Presence

- An *Anycast SID* identifies a set of nodes via a non-unique prefix
- Choice is made as an IGP shortest path first
- May use ECMP
- Helps survive failures and allows load ballancing
- Set of nodes are usually geographically close

Identifying SR Paths or Tunnels

- **Binding SID**s are SIDs that are bound to (i.e., identify) other SR paths or tunnels
- This allows an SR path to include another SR path or a tunnel by reference
- If the Binding SID identifies another SR path then the SR forwarding operation is:
 - Step beyond the Binding SID (decrement "Segments Left" or pop label)
 - Insert additional labels for the identified SR path
- If the Binding SID identifies a tunnel then the forwarding operation is:
 - Step beyond the Binding SID (decrement "Segments Left" or pop label)
 - Encapsulate the packet and send it down the tunnel
- Useful for scaling the SID stack at the packet ingress
- Useful for traversing legacy networks

SR CONTROL PLANE

Path Computation

- Performed on SR ingress router or on central controller
- Trivial computations
 - Single segment
 - Multiple statically configured segments
- Non-trivial computations

Constraint-based Shortest Path First (CSPF)

CSPF

- Assign attributes to each segment
 - Example: color, bandwidth, SRLG
- Assign requirements to each path
 - Example: Traverse only blue segments
- Find shortest path using only segments that fulfill requirements
- Link State Data Base (LSDB) provides information required by CSPF
- Advanced computation may be aware of other paths
 - Path diversity for protection

FIB Creation (MPLS)

- On each node, for each global SID
 - Create a FIB entry that swaps the label (if required) and forwards through the IGP shortest path
- On each node, for each local SID
 - Create a FIB entry that pops a label and forwards through the correct link
- LSDB provides information required for FIB creation

- LSDB provides information required for CSPF computation
- LSDB provides information required to create SR FIB entries
- ISIS and OSPF have been enhanced to flood SR information throughout the IGP domain
- SR requires an IGP and little else!

SR Convergence After Failures

- Failure occurs between segment endpoints
 - For a prefix segment, the SR path restores as quickly as IGP converges
 - TI-LFA may decrease IGP restoration time
- Failure occurs at segment endpoint
 - Head-end restoration strategies available
 - FRR solutions under consideration
- Anycast SIDs offer failure mitigation

THE CENTRAL CONTROLLER

Benefits

- Central control has global view of reserved bandwidth
 - Not available at any other point in the network
- Facilitates analytics driven policy
 - Controller receives telemetry
 - Based on telemetry, controller alters policy

Risk

- Concentrated point of failure / congestion
- Potential performance bottle neck
- Risks mitigated by redundant controllers

- May require some form of synchronization

Controller Protocol Options

- Controller acquires LSDB
 - Controller participates (passively) in IGP
 - BGP-LS exports LSDB to controller
- Controller sends segment list to ingress router
 - PCEP
 - BGP
- Controller imposes policy at ingress router
 - What traffic to place on a SR path
 - Flowspec additions to PCEP or BGP

CONCLUSION

Conclusion

- SR moves state from the network to the packet
 - Simplifies protocols
- Some problems remain to be addressed
 - OAM, Fast Reroute
- Operational experience required

<u>Q & A</u>

