Toward an Atlas of the Physical Internet

Summer 2014

Paul Barford
Computer Sciences
University of Wisconsin

Motivation

FIGURE 6.2 Drawing of 4 Node Network (Courtesy of Alex McKenzie)

Objectives of our work

- Create and maintain a comprehensive catalog of the physical Internet
 - Geographic locations of <u>nodes</u> (buildings that house PoPs, IXPs etc.) and <u>links</u> (fiber conduits)
- Extend with relevant related data
 - Active probes, BGP updates, weather, etc.
- Maintain portal for visualization and analysis
- Apply maps to problems of interest
 - Robustness, performance, security

Related work

- Many prior Internet mapping efforts
 - S. Gorman studies from early 2000's
 - CAIDA
 - DIMES
 - iPlane
- Commercial activities
 - TeleGeography
 - Renesys/Dyn
 - Lumeta
- Internet Topology Zoo

Compiling a physical repository

- Step #1: Identification
 - Utilize search to find maps of physical locations
- Step #2: Transcription
 - Multiple methods to automate data entry
- Step #3: Verification
 - Ensure that data reflects latest network maps
- Our hypothesis is that physical sites are limited in number and fixed in location
 - But the raw number is still large!

Example: Telstra world wide

Example: Sprint IP network (US)

Example: Regional fiber

Illinois POP List

ALTON

Address: 1805 Washington Ave Zip: Type: CO Status: FUTURE CLLI: ALTNILAK

BELLEVILLE

Address: 211 Kretschmer Ave Zip:

Type: CO Status: ACTIVE CLLI: BLVLILAD

BLOOMINGTON

Address: 110 E Monroe St Zip: 61701 Type: CO Status: ACTIVE CLLI: BLTNILXD

Address: 110 E Monroe St Zip: 61701 Type: CO Status: DOUBLE CLLI: BLTNILXD

CAIRO

Address: 221 15th St Zip: 62914 Type: CO Status: ACTIVE CLLI: CAIRILCF

CANTON

Address: 75 W Pine St Zip: 61520 Type: CO Status: ACTIVE CLLI: CNTNILCN

CARBONDALE

Address: 208 W Monroe St Zip: 62901 Type: CO Status: ACTIVE CLU: CRDLILXE

CARMI

Address: 200 W Cherry St Zip: 62821

Example: Metro fiber maps

Internet Atlas @ UW

- Effort began in September '11
 - Capture everything from maps discovered by search
 - Use all relevant data sources (ISP maps, colocation, data centers, NTP, traceroute, etc.)
- Data extraction and verification tools
- Comprehensive database
- Interactive web portal
 - Includes ArcGIS for visualization and analysis
- Paper in ACM SIGCOMM HotPlanet WS '13

Current DB

- Number of networks: 389
- Number of tier 1 networks: 10
- Number of data centers: 2,232
- Number of NTP servers: 744
- Number of traceroute servers: 221
- Number and type of other nodes: IXP (358), DNS root (282)
- Total number of nodes: 14,827
- Number of unique locations of nodes: 7,988
- Maximum overlap at any one node: 92
- Total number of links: 13,861
- Peering DB facility locations: 1058
- WiGLE Wireless SSID locations: 5202
- Antenna locations from FCC: 5786

Internet Atlas – Full View

Case study: RiskRoute

Consider Internet physical infrastructure:

- Can we automatically adjust routes to avoid outages before they happen?
- Can we identify the best backup routes?

Bit-risk miles metric

 The idea of bit-miles motivates the introduction of bit-risk miles

– Consider a network path:

$$\mathbf{p} = \{p_1, p_2, ..., p_K\}$$

$$\mathbf{p} = \{p_1, p_2, ..., p_K\}$$

$$\mathbf{p} = \{p_1, p_2, ..., p_K\}$$

The bit-risk miles of the routing path is defined as:

$$r_{i,j}\left(\mathbf{p}\right) = \sum_{x=1}^{K} \left(d_{p_x,p_{x+1}} + \gamma_{i,j}\left(\lambda_h o_h\left(p_x\right) + \lambda_f o_f\left(p_x\right)\right)\right)$$
Bit miles Outage risk

Utility of bit-risk miles

Quantifies the trade-offs between:

Short geographic routing paths with high outage risk

VS.

Long geographic routing paths with low outage risk

Defining terms

- Gamma: what is the <u>cost of an outage</u> between the source and destination?
 - To approximate this, we use the fraction of population affected clustered to nearest PoP
- Lambda_h: what is <u>historical outage probability</u> at a PoP location?
 - We use corpus of events from 1970 to 2010 (29,865 FEMA emergency declarations and over 145,000 NOAA severe weather events
- Lambda_f: what is <u>forecasted outage probability</u> at a PoP location?
 - Based on reported information from NWS, NHC, etc.

RiskRoute methodology

How do we choose which backup path has the smallest bit-risk miles?

- Current techniques: Storing only one backup path (e.g., Fast Reroute) is fragile to largescale outages
- Storing all the backup paths is combinatorial
- RiskRoute Framework: Using shortest path techniques, continuously recalculate all paths with the smallest bit-risk miles

Analysis

- Real-World Network
 - 7 Tier-1 ISPs, 16 regional networks
- Intra-domain Routing
 - Routing inside a specified network
- Inter-domain Routing
 - Routing between networks
- Performance Metrics:

$$i=1$$
 $j=1$ $P_{i,j}$

$$d_r = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{d\left(\mathbf{p}_{i,j}^{rr}\right)}{d\left(\mathbf{p}_{i,j}^{shortest}\right)} - 1$$

Intradomain results

Why is RiskRoute more advantageous to some networks?

Reduction in Bit-Risk Miles (Risk Ratio)

Increase in Bit-Miles (Distance Ratio)

Robustness results

 Can all networks decrease risk via the new link infrastructure?

Hurricane Katrina and Level3

Next steps

- Continue to populate DB
 - Goal = 500 networks by December, '14
- Continue to enhance web portal
 - Expanded analytic capability
- Add related data for physical sites
 - PoPs, routers, IP addresses, peering, etc.
- Expanded active probing capability
 - IP geolocation is the key
- Expand focus for target applications
 - Shared infrastructure risk

Thank you!

- Ram Durairajan
- Brian Eriksson
- Xin Tang
- Subhadip Ghosh

Portal

http://internetatlas.org