Hybrid Fiber-Coaxial Networks: Technology and Challenges in Deploying Multi-Gigabit Access Services

Kevin A. Noll

Network Structure

- Most networks are constructed as a 4-level hierarchy
 - Backbone
 - Regional
 - Metro

Access Network

- The largest component of the network in terms of
 - Physical/Geographic Size
 - Monetary Investment

TWC
Hybrid Fiber Coax (HFC) Access Network

HFC Network Components and Topology

Hub

Тар

Node

Functions in the Hub

- Reception of Video Signals from Content Networks/Programmers
- IP Connectivity to Metro/Regional Networks
- Modulation of Downstream Signals as
 - QAM (digital) or
 - VSB+DSB+SSB+FM (Analog)
- Pre-Conditioning of Downstream Signals to combat impairments in the optical and RF network
- Decoding of Upstream QAM/QPSK Signals
- Conversion of RF Signals to/from Intensity Modulated Optical Signals for long-distance transmission

Functions of a Node and Amplifier

HFC Node

- performs OE conversion of RF signals to/from hub
- can be located 50km or more from the hub

Trunk/Distribution Amplifier

- performs amplification of the RF signal after being degraded during transmission over coaxial cable
- May be cascaded 5-deep past the node (node+N architecture)

Functions of the Tap and Drop

Tap

 A multiport RF device that passes a specified amount of RF energy to a "TAP" port and passes the majority of RF energy from the "INPUT" to the "THRU" port

 Used to create a branch from the trunk coaxial cable to a subscriber's premises

Drop Cable ~100 ft k

Drop

 The coaxial cable that attaches the subscriber's premises to the tap port

HFC Powering

- The HFC Node and Amplifiers are electronic devices that require electrical power.
 - Power Supplies placed at regular intervals along the coaxial network provide power to the node and amplifiers
 - Power Insertion devices are used to couple
 AC and/or DC power to the same conductors
 carrying the RF signal
- The Coaxial Network is ALSO a power distribution network

Capabilities of a Typical HFC Network

- Downstream 54-750 MHz
 - 116 x 6 MHz Channels = 4.3Gbps @ 256 SC-QAM (single carrier)
 - \sim 6 bits/Hz
- Upstream 5-42 MHz
 - ~ 4 x 6 MHz Channels usable = 100 Mbps throughput @ 64 SC-QAM
 - \sim 2 bits/Hz

Increasing Capacity and Throughput

- Load = The amount of data requested and sent by users on the network
- Pipe = Throughput and Capacity available in the network
- Serving Group Size = the # of users sharing the Pipe

Increasing Capacity and Throughput

Reducing Serving Group Size

- Node Split
 - Reduces Serving Group
 Size by adding HFC
 Nodes and CMTS ports
 to serve the same
 number of users

- Increases Capacity ONLY
- Does NOT Increase
 Peak/Offered Speed

Expand the Pipe – Reclaim Spectrum

- Legacy Analog Signals are inefficient users of spectrum
 - 5% efficiency compared to MPEG-4
 - Typically can occupy 50% of the available spectrum
- Replace Analog with Digital Signals that are more efficient
 - MPEG-encoded Video on QAM can carry 2-20x more content than an analog channel
- Contractual Concerns must be satisfied
 - Franchise Agreements, Market Recognition, Must-Carry Agreements may be impacted by conversion of analog to digital
 - Deploy DTA to all subscribers who do not have Set-Top-Boxes (CAPEX \$\$,
 OPEX \$\$)

Expand the Pipe – Use the Unusable

Some operators avoid using sensitive frequencies

108-137 MHz – Aeronautical Mobile and Aeronautical Radio Navigation

328-355 MHz – Aeronautical Glideslope frequencies

Requires Plant Hardening to ensure no leakage of signals from

the coax plant

Expand the Pipe – More Spectrum

- Expand the Available Spectrum
 - Move the upper limit to 1GHz or higher
 - Move the US/DS split

Moniker	Upstream Frequency	Description
Sub-Split	5-43 MHz	Most used today
Mid-Split	5-85 MHz	Reasonable option
High-Split	5-200 MHz	Difficult and Expensive
Top-Split	>1 GHz	Much higher CPE cost

Requires heavy-duty network upgrades

Expand the Pipe – More Spectrum

- Nodes, Amplifiers, Filters
 - All operate with a specific frequency-split
 - All must be re-configured
 - or replaced if not compatible with the new split

Sample Amplifier Specification

Specifications ¹⁵	Units	Forward	Return
Frequency Split	MHz	54 – 1002 85 –1002 105 –1002 ¹⁴	5 – 42 5 – 65 5 – 85

Sample Node Specification

Forward	
Bandwidth	52 – 1 GHz, split dependent
Return	
Bandwidth	5 - 85 MHz, split dependent

Use the Pipe More Efficiently

- Better Compression Algorithms
 - Reduces RAW load on the network

Higher-Order Modulation and FEC

Figure 30 - 1024-QAM @ 40 dB SNR

Modulation	Efficiency (bits/symbol)	Bit Rate per 6 MHz (Mbps)	Required SNR (dB)
64 QAM	>5	~27	>18
256 QAM	>7	~40	>24
1024 QAM	>9	~50	>30
OFDM w/ 4096 QAM		~65	

Adapted from Chapman, Emmendorfer, Howald, Shulman, "Mission is Possible: An Evolutionary Approach to Gigabit-Class DOCSIS", NCTA, May 2012

Use the Pipe More Efficiently

How to Achieve Better SNR? – Plant "Hardening"

Plant Hardening

These tactics have enabled us to grow our max HSD speeds by ~300 over the last ~15 years (1 Mbps to 300 Mbps)

Max Downstream Speeds (Mbps)

1996 2001 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

How long can we keep it up?

Max Downstream Speeds (Mbps)

Q&A