
v v

Rick “Shermdog” Sherman
Puppet Labs

DevOps for NetOps

v

Introduction

~9.5 years - Juniper Networks
● Professional Services

● Identity and Policy Management
● Workflow systems

● Security Business Unit
● Cloud Architect

● Junos Manageability
● PyEZ (Python micro-framework)
● Ansible Modules
● Onbox scripting
● NetDev Evangelism

~3.5 months - Puppet Labs
● Release Engineering

● Network Platform Expansion

v

Let’s make some generalizations (what could go wrong?)

● Networks are a complex ecosystem inter-connected devices

● Services are spread over multiple systems
● Equipment is often heterogeneous

● Require a lot of planning, testing, and validation
● A lot of time is spent fire fighting
● Also a lot of mundane tasks

Life of a Network Engineer

v

● Network devices have historically been closed systems with vendor
specific CLIs

● They often differ between the same vendor device types and versions
● Configurations are hundreds if not thousands of lines (per system)
● Configuration != Desired state

● Often peering with other systems not under our control
● Vendors slow to introduce features, sometimes 18-24 months - upgrade
cycle is just as long.
● Network Engineers typically do not have a Sys Admin or programming
background

How does that differ from Sys Admins?

v

Content Credit: Cumulus Networks and bgpmon.net

Inter-tubes? More like spaghetti o.O

v

Ad-hoc management is difficult

v

● Collaborative
○ Tear down silos

■ We should all be working towards the same goal and have each
other’s back

● Systematic
○ Emphasis on the big picture. All the bandwidth and uptime in the world
means nothing if the services fail

● Iterative
○ Work towards a series of goals
○ Don’t have to boil the ocean - start small and get feedback often

● Automated
○ Build, Test, and Deliver at scale. Eliminate time sucks.
○ Infrastructure as Code

What is DevOps

v

Change?

v

● High-performing IT organizations experience 60 times fewer failures and
recover from failure 168 times faster than their lower-performing peers. They
also deploy 30 times more frequently with 200 times shorter lead times.
Failures are unavoidable, but how quickly you detect and recover from failure
can mean the difference between leading the market and struggling to catch up
with the competition.
● Burnout can be prevented, and DevOps can help. Burnout is associated with
pathological cultures and unproductive, wasteful work. The consequences
of burnout are huge, both for individuals and for organizations. Organizations
can fix the conditions that lead to burnout by fostering a supportive work
environment and ensuring work is meaningful, and that employees understand
how their own work ties to strategic objectives.

State of DevOps
https://puppetlabs.com/2015-devops-report

v

NetEng’s “must become programmers”

v

Industry has rewarded memorizing CLI commands.

Network engineers are well versed in understanding complex problems and
distributed systems.

Realize the value you can provide to your
organizations - move beyond the CLI

You are not the CLI

v

● In basic terms, programming is the manipulation of data.
● You already know the core concepts of data types and how to manipulate
them, the missing link is language and tools.

IT'S	
 SHOWTIME
BECAUSE	
 I'M	
 GOING	
 TO	
 SAY	
 PLEASE	
 a
TALK	
 TO	
 THE	
 HAND	
 "a	
 is	
 true"
BULLSHIT
TALK	
 TO	
 THE	
 HAND	
 "a	
 is	
 not	
 true"
YOU	
 HAVE	
 NO	
 RESPECT	
 FOR	
 LOGIC
YOU	
 HAVE	
 BEEN	
 TERMINATED

github.com/lhartikk/ArnoldC

Think like a programmer

v

Regardless of the language you speak, you know what this is.

You know that you can open and close this object
and you may also be able to lock and unlock it.

Separate the HOW from the WHAT

v

Hand crafted - artisanal configs

v

Cisco
hostname	
 nanog
ip	
 domain-­‐name	
 shermdog.com
ip	
 name-­‐server	
 10.0.0.1
ntp	
 server	
 10.14.99.10

A tale of two configs

Juniper
system	
 {
	
 	
 	
 	
 host-­‐name	
 nanog;
	
 	
 	
 	
 domain-­‐name	
 shermdog.com;
	
 	
 	
 	
 name-­‐server	
 {
	
 	
 	
 	
 	
 	
 	
 	
 10.0.0.1;
	
 	
 	
 	
 }
	
 	
 	
 	
 ntp	
 {
	
 	
 	
 	
 	
 	
 	
 	
 server	
 10.14.99.10;
	
 	
 	
 	
 }
}

v

Cisco
hostname	
 nanog
ip	
 domain-­‐name	
 shermdog.com
ip	
 name-­‐server	
 10.0.0.1
ntp	
 server	
 10.14.99.10

The How from the What

Juniper
system	
 {
	
 	
 	
 	
 host-­‐name	
 nanog;
	
 	
 	
 	
 domain-­‐name	
 shermdog.com;
	
 	
 	
 	
 name-­‐server	
 {
	
 	
 	
 	
 	
 	
 	
 	
 10.0.0.1;
	
 	
 	
 	
 }
	
 	
 	
 	
 ntp	
 {
	
 	
 	
 	
 	
 	
 	
 	
 server	
 10.14.99.10;
	
 	
 	
 	
 }
}

v

Data can come from a variety of sources - YAML, JSON, SQL,
etc. Source control it!

-­‐-­‐-­‐
host_name:	
 nanog
domain:	
 shermdog.com
dns:	
 10.0.0.1
ntp_server:	
 10.14.99.10

Where’s the beef?

v

Cisco
hostname	
 {{	
 host_name	
 }}
ip	
 domain-­‐name	
 {{	
 domain	
 }}
ip	
 name-­‐server	
 {{	
 dns	
 }}
ntp	
 server	
 {{	
 ntp_server	
 }}

Templates

Juniper
system	
 {
	
 	
 	
 	
 host-­‐name	
 {{	
 host_name	
 }};
	
 	
 	
 	
 domain-­‐name	
 {{	
 domain	
 }};
	
 	
 	
 	
 name-­‐server	
 {
	
 	
 	
 	
 	
 	
 	
 	
 {{	
 dns	
 }};
	
 	
 	
 	
 }
	
 	
 	
 	
 ntp	
 {
	
 	
 	
 	
 	
 	
 	
 	
 server	
 {{	
 ntp_server	
 }};
	
 	
 	
 	
 }
}

v

● Source control is *AMAZING*
● Git is a version control tool. It create a facility to store version history of
files and folders (organized as projects). It has mechanism for teamwork and
sharing with a foundation around file and history integrity.
● Unlike traditional source control where versions are stored as a set of diffs,
Git stores a snapshot of the entire project – much like a file system. This
gives users great flexibility to retrieve code throughout the history.

https://www.atlassian.com/git/tutorials/

Git with the program

v

Stop, Collaborate and Listen.

v

Network Automation as Pizza

v

Vendors are opening up their platforms with a variety of API’s and
abstraction layers (highlights in no particular order)
● Cisco

○ NX-API, onePK
○ Python API

● Juniper
○ Python PyEZ
○ JET

● Arista
○ eAPI Python Library

Rise of the API

v

IT Automation Frameworks

Ruby Python
•  Agent Based (some agentless support)
•  Puppet DSL
•  Network Devices - Officially Supported
•  Large community
•  Mature commercial offering

•  Agentless
•  YAML + Jinja2 Filters
•  Network Devices - Vendor/Community

Supported
•  Growing community
•  Basic commercial offering

•  Agent Based
•  Ruby DSL
•  Network Devices - Officially Supported
•  Large community
•  Mature commercial offering

•  Agent Based (some agentless support)
•  YAML / Jinja
•  Minimal Network
•  Small community
•  Basic commercial offering

v

GNS3

v

Cisco - VIRL

v

The Unicorns

v v
Cross-Vendor Standards

and the Future of Network Automation

v

NETCONF - IETF network management standard

• XML based encoding

• Vendor specific data models and implementation
• Configuration RPCs

• get-config, edit-config, copy-config, delete-config, lock, unlock
• Operational state RPCs

• Generally map to CLI “show” commands
• Transport: SSH, HTTPS, TLS, BEEP

NETCONF

v

YANG - IETF Data Modeling Language for Netconf

• Human-readable representation of data
• Hierarchical data node representation
• Built-in data types
• Constraints can be placed on the data
• Extensible

Data is still vendor (or group) specific

YANG

v v WHERE TO BEGIN?

v v HOW CAN I HELP?

v v

THANK YOU!

shermdog@puppetlabs.com
@shermdog01

