Successfully Deploying IPv6

Presented by Scott Hogg

CTO GTRI, Chair Emeritus RMv6TF, Infoblox IPv6 COE
NANOG On The Road 11, Denver, CO, May 10th, 2016
Successful IPv6 Planning

• Build a cross-functional IPv6 deployment team
 – Multidisciplinary, Collaborative, Cooperative

• Organizations need to treat IPv6 as a “Program” not just like a typical smaller IT “Project”.
 – IPv6 transition is made up of many projects that will span multiple years and cross the entire enterprise.

• Regular & frequent meetings are key to maintaining pace.

• Just like anything, executive buy-in and support is essential.

• Enterprise IPv6 Deployment Guidelines (RFC 7381) provides a good roadmap for all organizations.
Training for Success

• Assume your IT organization has not taken the initiative to immerse themselves in learning IPv6.
• People need to be trained early in the process, but not too early that they forget what they learned.
 – Train “just in time”, not years before an IPv6 address is actually configured on a production device.
• Training specific for different IT skillsets
 – Appdev, sysadmin, network engineer, security admin, DevNetSecOps, helpdesk, desktop support, PMs, …
• Much of your IPv4 experience is applicable to IPv6.
• Overcome fear the larger addresses – “Think in Hex”.
IPv6 Addressing

• IPv4-Think is dangerous when planning IPv6 addressing
 – Don’t use decimal #s, don’t embed VLAN #, don’t IPv4 address converted to hex, and then put into IPv6 address
• Perform addressing for simplicity and ease of use and management
 – Don’t be concerned about lots of reserved space
• There is no scarcity of IPv6 addresses, so there can be no waste
 – Don’t try to assign only the minimum-needed prefix length
 – Plan for the number of subnets, not the number of hosts
IPv6 Addressing: “Wasting” a /64

• Some people can’t seem to get the sparseness of nodes within a /64 and considered it “wasteful”
• A single /64 can have 18 quintillion possible nodes
• When the human population reaches 10B, each person could receive 1,844,674,407 nodes on the /64
• If you had a network with 1M nodes, your efficiency is infinitesimally small
 \[n = \frac{x}{1.8 \times 10^{19}} = \frac{1.0 \times 10^{6}}{1.8 \times 10^{19}} = 0.00000000000005421011 \]

• Whether you have 2 or 2M nodes, you are using only a small fraction of the whole /64

IPv6 Addressing

• Don’t force levels of hierarchy that are not needed.
• Use standard prefix lengths: /48, /56, /64
• Use nibble-boundary – Don’t use /50, /57, /65, …
• Consistency between sites can increase operational efficiency, however, not every site needs the same addressing plan.
 – Branches need a different plan than a data center “site”.
• Stick with Global Unicast Addresses (GUA) 2000::/3
 – Use these everywhere, you don’t need NAT66 (Read RFC 4864)
• Avoid Unique Local Addresses (ULA) FC00::/7 (FD00::/8)

Dual-Protocol DNS: IPv6 Root Zone (named.root)

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Address</th>
<th>Expires</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.ROOT-SERVICES.NET</td>
<td>AAAA</td>
<td>2001:500:26::f</td>
<td>2016-03-24</td>
</tr>
<tr>
<td>FORMERLY NS.NIC.INTERNIC.NET</td>
<td>NS</td>
<td>3600000</td>
<td>198.41.6.4</td>
</tr>
<tr>
<td>FORMERLY NS1.ISI.EDU</td>
<td>NS</td>
<td>3600000</td>
<td>192.228.79.201</td>
</tr>
<tr>
<td>FORMERLY C.INTERNIC.NET</td>
<td>NS</td>
<td>3600000</td>
<td>192.33.4.19</td>
</tr>
<tr>
<td>FORMERLY TERC.USD.EDO</td>
<td>NS</td>
<td>3600000</td>
<td>192.7.91.13</td>
</tr>
<tr>
<td>FORMERLY NS.NASA.GOV</td>
<td>NS</td>
<td>3600000</td>
<td>192.203.230.3</td>
</tr>
<tr>
<td>FORMERLY NS.ISC.ORG</td>
<td>NS</td>
<td>3600000</td>
<td>192.5.5.241</td>
</tr>
</tbody>
</table>

Related version of root zone: 201603201

HTTP://WWW.INTERNIC.NET/DOMAIN/NAMED.CACHE
Disabling Router Advertisements in a Data Center

- As soon as IPv6 address is added to router’s interface, it sends out an ICMPv6 Type 134 RA with A=1, L=1
- Sending an RA activates the IPv6 stack in all hosts on that network – that may not be what you intend or want
- In a data center environment, servers are statically addressed
 - They don’t need the RA to learn their first-hop router
- Suppressing RSs and RAs allows you to turn on IPv6 one server at a time and deliberately deploy IPv6
- Consider sending RA with A=0, L=1, M=0, O=0
IPv6 Routing

• IP addressing and routing go hand-in-hand.
• All IP routing protocols now have IPv6 capabilities.
• Separating control plane for two data planes is preferred.
 – Establish BGP peer over IPv4 TCP 179 for sharing IPv4 routes
 – Establish BGP peer over IPv6 TCP 179 for sharing IPv6 routes
• Peering using global IPv6 addresses is preferred
• Don’t forget to use a 32-bit RID in the IPv6 routing process.
• Bidirectional Forwarding Detection (BFD) is now available in many routing protocols on many platforms
• Consider using locally-administered link-local addresses.
 – fe80::cccc:0001, fe80::dddd:0002, …
IPv6 Prefix Disaggregation

- If you have been allocated a /32, /36, /40, /44, congratulations, now advertise it with BGP
- Do not disaggregate that prefix into many /48s
- There is little reason to advertise more-specific /48s
 - Anycast (e.g. root name servers)
 - Testing, Monitoring
- Disaggregation is bad form and shows your lack of expertise and coolness

IPv6 BGP Looking Glasses

- View yourself from the Internet-perspective using IPv6-capable looking glasses.
Translation technique that uses NAT and DNS in combination
Uses the IPv6 prefix 64:ff9b::/96 to map the 32-bit IPv4 DNS responses into an IPv6 address that an IPv6-only client can use
DNS64 (RFC 6147) and NAT64 (RFC 6146) “appears” to share state information about connections but they do not directly share state information.

http://www.networkworld.com/article/2231256/cisco-subnet/testing-nat64-and-dns64.html
DNS64 & NAT64 Drawbacks

- NAT64 only works for applications that start with a DNS lookup
- Breaks with applications that embed an IPv4 address in the URL (embedded literals) (e.g. http://192.168.1.1/)
- Breaks for domains that have IPv4-only DNSSEC signed domains
- ~15% of applications break with IPv6 native or break with NAT64
 - Spotify, WhatsApp, Skype, SIP, RTSP, H.323, XMPP peer to peer
 - http://tinyurl.com/nat64-breakage
Network Prefix Translation (NPTv6) (RFC 6296)
- Translates source address from one prefix to another prefix
- Remainder of IPv6 address remains the same
- 1:1 mapping – stateless
- Some networking/perimeter products support this today
Dual Stack Increases OPEX Costs

Benefits of IPv6-only

- Reduced OPEX costs by running only a single IP protocol
- IPv6 addressing (operations) is simpler
 - No NAT makes everything better
- Reduced dependence on increasingly expensive IPv4 addresses
 - If you know you are going to need more IPv4, buy it now
 - Sell your public IPv4 at the peak price
- No need to purchase and maintain CGN/LSN systems
- In some cases IPv6 performs better than IPv4

Is IPv6 Faster Than IPv4?

• There are now several studies analyzing if IPv6 is faster than IPv4.
 – Google’s 2010 paper titled “Evaluating IPv6 Adoption in the Internet”
• Geoff Huston of APNIC at NANOG 66
 – 6to4 and Teredo are responsible for most of the connection failures
 – He concluded that native IPv6 can be as-fast as IPv4
• Paul Saab at Facebook has shows data from Mobile Proxygen that shows IPv6 is faster for them.
 – “Facebook says it has seen users’ News Feeds loading 20 percent to 40 percent faster on mobile devices using IPv6”.
• Hurricane Electric (HE) Global IPv6 Deployment Progress Report
 – “Percentage of IPv6 rDNS Nameservers where IPv6 is as fast or faster than IPv4 (within 1ms): 74.9%”
Dual-Protocol Applications

• Assessing current code for IPv6-capability
 – Most applications do not create socket-level connections.
 – Most applications use higher-level APIs or rely on lower-level web services for connectivity.

• Create code that is Address-Family (AF) independent.

• Presentation-to-Numeric (p2n) & Numeric-to-Presentation (n2p)
 – Robustness principle: Be conservative in what you send, be liberal in what you accept.

• Be careful of data structures for storing 128-bit addresses.

• Create code that performs dual-protocol DNS resolution and incorporates Happy Eyeballs (RFC 6555).

• Write code that properly handles Path MTU Discovery (PMTUD).
IPv6 Security Considerations

• Understand how IPv4 and IPv6 are different in terms of networking (NDP, extension headers, dynamic tunnels)
• Learn how IPv6 NDP, link-local, and multicast packets are already on your network
• Don’t deploy IPv6 if you lack the products to secure the protocol properly.
• Don’t be overly worried about IPv6 NDP security weaknesses.
 – You likely haven’t secured ARP on your IPv4 LANs either.

https://community.infoblox.com/blogs/2015/02/10/holding-ipv6-neighbor-discovery-higher-standard-security
Troubleshooting Dual Protocol Networks

- Even if you do not deploy IPv6, there could still be IPv6-related issues that you must deal with.
- You now have IPv6-enabled nodes in your environment.
- Using a disciplined troubleshooting methodology will pay dividends when dealing with multi-part problems.
- Keep your IT infrastructure documentation constantly updated as you deploy IPv6.
 - Readily available docs will reduce your MTTR.
- Troubleshoot IPv6 in segments (LAN1, WAN, LAN2).
Troubleshooting Dual Protocol Networks

- Applicatio...
Our network management and operations systems must be dual-protocol capable and give us visibility to IPv6.

Troubleshooting NDP requires a magnifying lens.
- You may need to break out the protocol analyzer.

We want test systems to automatically check both protocols in parallel.
Troubleshooting Dual Protocol Networks

• Different applications and different OSs create dual-protocol connections in different methods.
 – Happy Eyeballs, RFC 6555, Microsoft NCSI, Apple Mac OS X & iOS

• Some connections could use IPv4 and/or IPv6.
 – Web pages could be delivered over a combination of protocols. How do you know which protocol was used?
 – IPv6 Browser add-ons, plug-ins can be helpful
 • IPvFox (Firefox), SixOrNot, IPvFoo (Chrome)
IPv6-Troubleshooting Browser Additions
IPv6 Roses and Thorns

- What we are doing right?
 - IPv6 support now exists in most products
 - Mobile and residential subscribers now using IPv6
 - IPv6 adoption doubling every year, hockey-stick graphs
- What could we do better?
 - Corporate enterprise internal access networks
 - SMB dependence on PA IPv6 addresses without NPTv6/NAT66
 - Content providers – we need more dual-protocol web sites
 - Cloud services need IPv6 (AWS, MS Azure, Google)
 - Better Geolocation data for IPv6
 - Security Reputation data for IPv6
Thank You!

Scott Hogg, CTO GTRI
shogg at gtri.com, @scotthogg