
A FRESH LOOK AT SCALABLE
FORWARDING THROUGH

ROUTER FIB CACHING

Kaustubh Gadkari, Dan Massey and Christos Papadopoulos

 2 2

Problem: RIB/FIB Growth

  Global RIB directly
affects FIB size

  FIB growth is a big
concern:
  Lookups need to keep up

with increasing line
speeds

  FIB memory is small,
expensive

  Makes network
provisioning hard

  IPv6 growth may make
things worse

Date

Pr
ef

ix
es

The obligatory Geoff Huston plot,
http://bgp.potaroo.net

 3 3

Why Cache?

Performance! (cost too)
  Two potential benefits:
  Reduce the memory bandwidth required for FIB

accesses
  When FIB is accessed on forwarding decisions

  Better FIB compression on forwarding chips
  Less compression (faster access) for the cache
  More compression (slower access) for the rest
  Potentially needed for Tb/s chips

 4 4

Is There Traffic Locality?

Link Number of
Packets

ISP-1 2,084,398,007

ISP-2 2,050,990,835

Average Packet Rate
Traces from our local friendly
ISP, FRGP: Thanks guys!

Test subjects: two 24H traces
at two tier-1 provider links
(1Gb/s) at a regional ISP

 5 5

Yes, There is Locality!

  ~80k prefixes carry
99% of all traffic.

  ~1K prefixes carry
90% of the traffic
  (but we already knew

that, see Rexford’s
work and others)

 6 6

Caching Results - LRU

  Hit rate 96 - 99%
  24H trace, 5min intervals

  Close to optimal
performance
  Even at cache warm up hit

rate = ~87-91%

  Caching works!

  Great! Now how do we
build gear that use it?

Cache hit rate, LRU size: 10K

 7 7

Barriers to FIB Caching

  Three barriers to FIB caching
  Cache hiding
  Handling cache misses
  Robustness

 8 8

Secret Sauce: Cacheable FIB

RIB
Route Updates

LINE CARD

Cache

Packets In

Packets Out

Cache now preserves
forwarding correctness

Cacheable
FIB

FIB
Lookup

 9 9

The Cache Hiding Problem

  Consider the following snippet of a FIB
  The /16 covers (hides) the /24

Prefix Interface

. .

. .

12.13/16 1

12.13.14/24 2

. .

. .

 10 10

12.13.1.1

Cache Hiding Impairs Forwarding

Cache

Prefix Interface

12.13/16
12.13.14/24

1
2

Packet 12.13.14.1 is forwarded
incorrectly: 12.13/16 in the cache
hides the true match

1

2

12.13.14.1

12.13.14.1

12.13.1.1

Prefix IFF

12.13/16 1

FIB

 11 11

Solving Cache Hiding – Hole Filling

12.13/16, IFF 1

Non-cacheable FIB Cacheable FIB

12.13.14/24, IFF 2

12.13.0/17, IFF 1 12.13.128/17, IFF 1

12.13.0/18, IFF 1 12.13.64/18, IFF 1

12.13.0/19, IFF 1 12.13.32/19, IFF 1

12.13.15/24, IFF 1

12.13.14/23, IFF 1

12.13.16/20, IFF 1

12.13.0/21, IFF 1

12.13.8/22, IFF 1

12.13.12/23, IFF 1

12.13.128/17, IFF 1

12.13.64/18, IFF 1

12.13.32/19, IFF 1

12.13.14/24, IFF 2

12.13.15/24, IFF 1

 12 12

Have We Exploded the FIB?

  Actually, NO!
  At FRGP, we go from

397,878 to 432,422
entries
  6.5% increase in size

  Other ISPs are similar
(Route Views data)

  Caching makes this
increase irrelevant
anyway

Peer Name % Increase

GBLNETRU 	 6.8%

CENIC 	 6.8%

Sprint 	 6.6%

APAN 	 6.6%

ESNet 	 6.6%

AOL 	 6.5%

Hurricane- Electric 	 6.5%

Sprint Canada 	 6.4%

Level3 	 6.4%

AT&T 	 6.4%

 13 13

The Happy 99% vs. the Sad 1%

  What happens to the 1% of packets that miss
the cache?

  They are queued until the cache is updated
  But what does that queue look like?

 14 14

Queuing Simulator

Cache

Cache Miss
Buffer

Cacheable FIB

Output
Iface
Buffer

Packets In Packets Out YES

NO Prefix Fetch on
Cache Miss Queued packets

sent out after
prefix fetch

Lookup time = 100ns
(probably high estimate)

  Simulator built for simplicity, not for
optimal performance.

Lookup time = 100μs
(ridiculously high!)

 15 15

Cache Miss Buffer Utilization

  No data packets
queued!
  956K total misses, 752K

SYNs, rest SYNACKs

  Buffer utilization is very
low
  approx. 10 packets in

any given interval

  Small buffers needed to
queue packets

Cache Warm-up

 16 16

Attacking the Cache

  Attacking a LRU cache is trivial :-(
  Just send a train of packets to N idle prefixes

  Should have simulated LFU .. (next step)
  Research question: what is the appropriate cache

replacement algorithm?
  we plan to take a shot

  But with LFU, what rate does an attacker need to
send packets to blow the cache?

 17 17

Attack on an LFU Cache

Prefix i

N=10K

1

Most Popular

Attack Prefix

Attacker picks an idle prefix and sends
more pps than most popular prefix

Least Popular

 18 18

Result of the Attack

  Attacker prefix becomes top
prefix

  Prefix 1 becomes prefix 2
  Least popular prefix is evicted
  To evict all prefixes from cache

attacker has to use N idle
prefixes each at a rate higher
than the most popular prefix

Prefix i

N=10K

1

Prefix 1->2
Attack Prefix

Least Popular

 19 19

Generalizing the Cache Attack

  To evict prefix i the attacker must
send:
  Pattack >= Pi * i

  where Pi is the packet rate for prefix i

  From our trace:
  i = 100, Pattack >= 5500 pps
  I = 5K, Pattack >= 8.76Mpps
  I = 10K, Pattack >= 17.52Mpps

  Flooding attack, not a cache
attack!

Prefix i

N=10K

1 Least Popular

Most Popular

Attack Prefix

 20 20

Limitations – Future Work

  Do these observations carry to the core?
  Need a trace from the core to investigate
  Can you give us one? :-)
  ..but recent trends point towards a traffic concentration

to datacenters
  LRU, LFU cache replacement – tradeoff between

performance and robustness?
  Better analysis of cache misses

  Memory bandwidth demand
  Who suffers from misses?

 21 21

Conclusions

  Yet another reminder of traffic locality – and that
caching works
  96-99% hit rate with a 10K cache at edge
  no cache hiding problem
  low queuing delay while updating the cache
  cache fairly robust – attacks against top prefixes

infeasible?
  So let’s build gear with caches!

  Unless we change physics, may be the only way
forward with Tb/s speeds and large Global RIB (IPv6)

 22 22

Thank You!

  Work funded by the DHS PREDICT project
  Data provided by Front Range GigaPop (FRGP)
  Thanks to the following people for fruitful

discussions:
  Jon Turner – Washington University, St. Louis
  Will Eatherton – Juniper Networks
  Chang-Hong Wu – Juniper Networks

 23 23

Start Backup slides

 24 24

One Solution: Cache the FIB

  Locality of network traffic is well-known
  LRU caching of /24s shown to provide 99%+ hit

rate with a 100k entry cache
  Us: 99%+ hit rates with a 10k entry cache without

de-aggregating prefixes
  We also investigate effects of cache misses and

cache attacks

 25 25

Solution: Making FIB Cacheable

Main idea:
  Start with existing FIB
  Process FIB to replace all “hidden” prefixes with

prefixes that cannot be hidden
  Produce new, cacheable FIB
  Serve the cache from the cacheable FIB

 26 26

Current FIB Architecture

RIB

BGP Route
Updates

LINE CARD

FIB Lookup

Packets In

Packets Out

FIB contains ALL routes

FIB

 27 27

Current FIB Not Cacheable!

RIB

BGP Route
Updates

LINE CARD

Cache

Packets In

Packets Out Cache Hiding Problem leads
to incorrect forwarding

FIB
FIB

Lookup

 28 28

Evaluation

1N Prefix Rank
i

Prefixes to evict

To ith prefix and all prefixes below it from cache, the required attack
rate is

Pattack >= Pi * i

Assuming N = 10K entries, and k being the number of prefixes to
evict

For k = 1, Pattack >= 1 pps
For k = 5K, Pattack >= 8.76M pps
For k = 10K, Pattack >= 17.52M pps

Most Popular Least Popular

Cache

 29 29

Queuing Delay

  Queued packets
should not incur large
delays

  Average delay is 1.1
ms.
  Not counting cache

warmup

Cache Warmup

 30 30

TCAM Limitations

  TCAMs can do ~1.6B searches per second
  800M searches per second in the worst case

  Line cards typically have enough TCAM memory to
store 512K IPv4 entries and 256K IPv6 entries

  TCAM lookups are fast (<20ns), but can they keep
up with increasing line speeds (>= 100Gbps)?
  8,333,333 lookups per second, assuming all 1500 byte

packets
  223,696,213 lookups per second, assuming all 60 byte

packets

 31 31

Implications of FIB Growth

  Routers can crash when they run out of memory
(Chang02 et. al.)

  Some operators filtering out small prefixes (mostly /
24s) rather than upgrade (Ballani09 et.al.)
  Some parts of the Internet may become unreachable

  Network provisioning is harder
  Difficult to estimate usable lifetime of routers and

upgrade costs.

 32 32

Impact of Cache Hiding

  Have to treat related prefixes at atomic blocks
  All cache operations performed on entire block

  Largest atomic block size is 2557 prefixes

  Leads to cache thrashing

  Increases cache sizes

  Cache operations now more complex

 33 33

Our proposal - Hole Filling

  Fill in holes between prefixes to eliminate cache
hiding

  Add additional entries to the FIB
  Trade FIB size for FIB cacheability

  Basic idea: Every prefix block is covered by non-
overlapping prefixes

  This set is optimal (adds minimum number of
prefixes required to cover the address space)

 34 34

Publications

  Dynamics of Prefix Usage at an Edge Router, Kaustubh Gadkari,
Dan Massey and Christos Papadopoulos, 12th Passive and Active
Measurements Conference (PAM 2011), March 2011

  Fingerprinting Custom Botnet Protocol Stacks, Steve DiBenedetto,
Kaustubh Gadkari, Nicholas Diel, Andrea Steiner, Dan Massey and
Christos Papadopoulos, Workshop on Secure Network Protocols
(NPSec 2010) (in conjunction with ICNP 2010), October 2010

  Dynamics of RIB Usage at an Edge Router (Poster), Kaustubh
Gadkari, Steve DiBenedetto, Dan Massey and Christos
Papadopoulos, 18th International Conference on Network Protocols
(ICNP 2010), October 2010

  Characterizing TCP Resets in Established Connections, Nicholas Diel,
Kaustubh Gadkari, Steve DiBenedetto, Andrea Steiner and Christos
Papadopoulos, Technical Report CS-08-102.

 35 35

Quantifying Cache Hiding

  Treat prefix groups as atomic blocks.

Peer Name Number of
Prefixes in Table

Size of Largest
Atomic Block

GBLNETRU 	 345643 	 2557 	

CENIC 	 341122 	 2557 	

Sprint 	 338169 	 2557 	

APAN 	 344810 	 2557 	

ESNet 	 340874 	 2556 	

AOL 	 338247 	 2556 	

Hurricane-
Electric 	 340402 	 2556 	

Sprint Canada 	 339509 	 2556 	

Level3 	 337701 	 2555 	

AT&T 	 338368 	 2552 	

 36 36

Line Card Memory Limitations

  RIB stored in RAM (DRAM)
  Large : N GB
  Cheap : Approx. $200 per GB
  Scaling not considered a problem

  FIB stored on line cards (SRAM/TCAM)
  Small : N MB
  Expensive : Approx. $4000 per GB
  FIB is the union of all RIBs
  Scaling is considered a problem

  IPv6 impact is unknown
  Size of FIB after IPv6?
  Lookups at speeds of 100G+?

 37 37

Addressing Cache Hiding

Cache

12.13.1.1

12.13.14.1

12.13/16,1

12.13/16,1

FIB

12.13/16,1
12.13.14/24,2

12.13.14/24,2

12.13.14/24,2

All packets are forwarded correctly.

 38 38

Solution Space

2/6/13

 Table (FIB/RIB)

Method
FIB RIB

Architectural •  Caching •  Edge-core
separation

Configuration-only •  Aggregation •  Aggregation

 39 39

Uni-class Caching

  Kim et. al. show that route caching is feasible, and
may be necessary.

  Cache only /24 prefixes.
  This mitigates the cache hiding problem.

  Achieves 99%+ hit rates with cache sizes of 100k
entries.

 40 40

Aggregation

  Better than the naïve solution – leads to smaller FIBs.
  Compress FIB entries based on next-hop

information.
  Can achieve 30 – 70% compression, based on

aggregation algorithm.

 41 41

Cache Miss Evaluation

  Built simulator to
evaluate effect of
cache misses.

  Simulator built for
simplicity, not for
optimal performance.

 42 42

Handling Dynamic Route Updates

  Investigate how dynamic updates affect route
caches
  Cache entries can be invalidated

  How many updates actually affect cache entries?
  How do we handle those updates that do affect

cache entries?

 43 43

Implementing Caching on Current
Hardware

  Investigate whether we can implement the caching
scheme in current router hardware.

  Ideally, routers should not need new hardware to
use our caching solution.

 44 44

Evaluation

  To evict Nth entry from cache, attacker must send enough
packets to that prefix and all cache entries below it

  To evict i entries, attack rate required is
 Pattack >= Pi * i

  In low traffic interval, most popular prefix received
240K packet in 5 mins, at an avg. packet rate of 803
pps

  Assuming cache size of 10K, attacker needs to send 8M
pps to blow away cache
  17.52M pps in high traffic interval

  This traffic rate is higher than the line speed at our
capture point (2M pps, assuming 60 byte packets)

 45 45

Threat Model

  Attacker knows, or can determine, set of popular and
unpopular aggregates

  Attacker can send packets at line speed
  Attacker aims only to replace legitimate cache entries

with bogus ones
  Attacks on other infrastructure (e.g. DDoS) will trigger other

defenses
  Attack cannot be stealthy

  Attack rate must compete with legitimate traffic
  What is the packet rate required?

 46 46

Future Work

  We will investigate how to handle dynamic route
updates

  Further, we will investigate whether our caching
solution can be implemented on existing router
hardware

 47 47

What is Optimal Caching?

  Defined on a cache size N, finite network trace
  When evicting a prefix choose the one that will not

be used for the longest time in the future
  This includes the current prefix!
  Robust against one-off packets

  Theoretical algorithm – please do not try to
implement in practice

