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Problem: RIB/FIB Growth 

  Global RIB directly 
affects FIB size 

  FIB growth is a big 
concern: 
  Lookups need to keep up 

with increasing line 
speeds 

  FIB memory is small, 
expensive 

  Makes network 
provisioning hard 

  IPv6 growth may make 
things worse 
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The obligatory Geoff Huston plot, 
http://bgp.potaroo.net 
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Why Cache? 

Performance! (cost too) 
  Two potential benefits: 
  Reduce the memory bandwidth required for FIB 

accesses 
  When FIB is accessed on forwarding decisions 

  Better FIB compression on forwarding chips 
  Less compression (faster access) for the cache 
  More compression (slower access) for the rest 
  Potentially needed for Tb/s chips 
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Is There Traffic Locality? 

Link Number of 
Packets 

ISP-1 2,084,398,007  

ISP-2 2,050,990,835  

Average Packet Rate 
Traces from our local friendly 
ISP, FRGP: Thanks guys! 

Test subjects: two 24H traces 
at two tier-1 provider links 
(1Gb/s) at a regional ISP 
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Yes, There is Locality! 

  ~80k prefixes carry 
99% of all traffic. 

  ~1K prefixes carry 
90% of the traffic 
  (but we already knew 

that, see Rexford’s 
work and others) 
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Caching Results - LRU 

  Hit rate 96 - 99% 
  24H trace, 5min intervals 

  Close to optimal 
performance 
  Even at cache warm up hit 

rate = ~87-91% 

  Caching works! 

  Great! Now how do we 
build gear that use it? 

Cache hit rate, LRU size: 10K 
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Barriers to FIB Caching 

  Three barriers to FIB caching 
  Cache hiding 
  Handling cache misses 
  Robustness 
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Secret Sauce: Cacheable FIB 

RIB 
Route Updates 

LINE CARD 

Cache 

Packets In 

Packets Out 

Cache now preserves 
forwarding correctness 

Cacheable 
FIB 

FIB 
Lookup 
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The Cache Hiding Problem 

  Consider the following snippet of a FIB 
  The /16 covers (hides) the /24 

Prefix Interface 

. . 

. . 

12.13/16 1 

12.13.14/24 2 

. . 

. . 
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12.13.1.1 

Cache Hiding Impairs Forwarding 

Cache 

Prefix Interface 

12.13/16 
12.13.14/24 

1 
2 

Packet 12.13.14.1 is forwarded 
incorrectly: 12.13/16 in the cache 
hides the true match 

1

2

12.13.14.1 

12.13.14.1 

12.13.1.1 

Prefix IFF 

12.13/16 1 

FIB 
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Solving Cache Hiding – Hole Filling 

12.13/16, IFF 1 

Non-cacheable FIB Cacheable FIB 

12.13.14/24, IFF 2 

12.13.0/17, IFF 1 12.13.128/17, IFF 1 

12.13.0/18, IFF 1 12.13.64/18, IFF 1 

12.13.0/19, IFF 1 12.13.32/19, IFF 1 

12.13.15/24, IFF 1 

12.13.14/23, IFF 1 

12.13.16/20, IFF 1 

12.13.0/21, IFF 1 

12.13.8/22, IFF 1 

12.13.12/23, IFF 1 

12.13.128/17, IFF 1 

12.13.64/18, IFF 1 

12.13.32/19, IFF 1 

12.13.14/24, IFF 2 

12.13.15/24, IFF 1 



 12  12 

Have We Exploded the FIB? 

  Actually, NO! 
  At FRGP, we go from 

397,878 to 432,422 
entries 
  6.5% increase in size 

  Other ISPs are similar 
(Route Views data) 

  Caching makes this 
increase irrelevant 
anyway 

Peer Name % Increase 

GBLNETRU 	   6.8% 

CENIC 	   6.8% 

Sprint 	   6.6% 

APAN 	   6.6% 

ESNet 	   6.6% 

AOL 	   6.5% 

Hurricane- Electric 	   6.5% 

Sprint Canada 	   6.4% 

Level3 	   6.4% 

AT&T 	   6.4% 
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The Happy 99% vs. the Sad 1% 

  What happens to the 1% of packets that miss 
the cache? 

  They are queued until the cache is updated 
  But what does that queue look like? 
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Queuing Simulator 

Cache 

Cache Miss 
Buffer 

Cacheable FIB 

Output 
Iface 
Buffer 

Packets In Packets Out YES 

NO Prefix Fetch on 
Cache Miss Queued packets 

sent out after 
prefix fetch 

Lookup time = 100ns 
(probably high estimate)  

  Simulator built for simplicity, not for 
optimal performance.  

Lookup time = 100μs 
(ridiculously high!) 
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Cache Miss Buffer Utilization 

  No data packets 
queued! 
  956K total misses, 752K 

SYNs, rest SYNACKs 

  Buffer utilization is very 
low 
  approx. 10 packets in 

any given interval 

  Small buffers needed to 
queue packets 

Cache Warm-up 
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Attacking the Cache 

  Attacking a LRU cache is trivial :-( 
  Just send a train of packets to N idle prefixes 

  Should have simulated LFU .. (next step) 
  Research question: what is the appropriate cache 

replacement algorithm? 
  we plan to take a shot  

  But with LFU, what rate does an attacker need to 
send packets to blow the cache? 
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Attack on an LFU Cache 

Prefix i  

N=10K  

1  

Most Popular  

Attack Prefix  

Attacker picks an idle prefix and sends 
more pps than most popular prefix 

Least Popular 
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Result of the Attack 

  Attacker prefix becomes top 
prefix 

  Prefix 1 becomes prefix 2 
  Least popular prefix is evicted 
  To evict all prefixes from cache 

attacker has to use N idle 
prefixes each at a rate higher 
than the most popular prefix 

Prefix i  

N=10K  

1  

Prefix 1->2  
Attack Prefix  

Least Popular 
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Generalizing the Cache Attack 

  To evict prefix i the attacker must 
send: 
  Pattack >= Pi * i 

  where Pi is the packet rate for prefix i 

  From our trace: 
  i = 100, Pattack >= 5500 pps 
  I = 5K, Pattack >= 8.76Mpps 
  I = 10K, Pattack >= 17.52Mpps 

  Flooding attack, not a cache 
attack! 

Prefix i 

N=10K  

1  Least Popular 

Most Popular  

Attack Prefix  
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Limitations – Future Work 

  Do these observations carry to the core? 
  Need a trace from the core to investigate 
  Can you give us one? :-) 
  ..but recent trends point towards a traffic concentration 

to datacenters 
  LRU, LFU cache replacement – tradeoff between 

performance and robustness? 
  Better analysis of cache misses 

  Memory bandwidth demand 
  Who suffers from misses? 
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Conclusions 

  Yet another reminder of traffic locality – and that 
caching works 
  96-99% hit rate with a 10K cache at edge 
  no cache hiding problem 
  low queuing delay while updating the cache 
  cache fairly robust – attacks against top prefixes 

infeasible? 
  So let’s build gear with caches! 

  Unless we change physics, may be the only way 
forward with Tb/s speeds and large Global RIB (IPv6) 
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Thank You! 

  Work funded by the DHS PREDICT project 
  Data provided by Front Range GigaPop (FRGP) 
  Thanks to the following people for fruitful 

discussions: 
  Jon Turner – Washington University, St. Louis 
  Will Eatherton – Juniper Networks 
  Chang-Hong Wu – Juniper Networks 
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Start Backup slides 



 24  24 

One Solution: Cache the FIB 

  Locality of network traffic is well-known 
  LRU caching of /24s shown to provide 99%+ hit 

rate with a 100k entry cache 
  Us: 99%+ hit rates with a 10k entry cache without 

de-aggregating prefixes 
  We also investigate effects of cache misses and 

cache attacks 
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Solution: Making FIB Cacheable 

Main idea: 
  Start with existing FIB 
  Process FIB to replace all “hidden” prefixes with 

prefixes that cannot be hidden 
  Produce new, cacheable FIB 
  Serve the cache from the cacheable FIB 
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Current FIB Architecture 

RIB 

BGP Route 
Updates 

LINE CARD 

FIB Lookup 

Packets In 

Packets Out 

FIB contains ALL routes 

FIB 
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Current FIB Not Cacheable! 

RIB 

BGP Route 
Updates 

LINE CARD 

Cache 

Packets In 

Packets Out Cache Hiding Problem leads 
to incorrect forwarding 

FIB 
FIB 

Lookup 
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Evaluation 

1N Prefix Rank 
i 

Prefixes to evict 

To ith prefix and all prefixes below it from cache, the required attack 
rate is 

Pattack >= Pi * i 

Assuming N = 10K entries, and k being the number of prefixes to 
evict 

For k = 1,  Pattack >=  1 pps 
For k = 5K, Pattack >= 8.76M pps 
For k = 10K, Pattack >= 17.52M pps 

Most Popular Least Popular 

Cache 
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Queuing Delay 

  Queued packets 
should not incur large 
delays 

  Average delay is 1.1 
ms. 
  Not counting cache 

warmup 

Cache Warmup 
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TCAM Limitations 

  TCAMs can do ~1.6B searches per second 
  800M searches per second in the worst case 

  Line cards typically have enough TCAM memory to 
store 512K IPv4 entries and 256K IPv6 entries 

  TCAM lookups are fast (<20ns), but can they keep 
up with increasing line speeds (>= 100Gbps)? 
  8,333,333 lookups per second, assuming all 1500 byte 

packets 
  223,696,213 lookups per second, assuming all 60 byte 

packets 
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Implications of FIB Growth 

  Routers can crash when they run out of memory 
(Chang02 et. al.) 

  Some operators filtering out small prefixes (mostly /
24s) rather than upgrade (Ballani09 et.al.) 
  Some parts of the Internet may become unreachable 

  Network provisioning is harder 
  Difficult to estimate usable lifetime of routers and 

upgrade costs. 
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Impact of Cache Hiding 

  Have to treat related prefixes at atomic blocks 
  All cache operations performed on entire block 

  Largest atomic block size is 2557 prefixes 

  Leads to cache thrashing 

  Increases cache sizes 

  Cache operations now more complex 
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Our proposal - Hole Filling 

  Fill in holes between prefixes to eliminate cache 
hiding 

  Add additional entries to the FIB 
  Trade FIB size for FIB cacheability 

  Basic idea: Every prefix block is covered by non-
overlapping prefixes 

  This set is optimal (adds minimum number of 
prefixes required to cover the address space) 
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Publications 

  Dynamics of Prefix Usage at an Edge Router, Kaustubh Gadkari, 
Dan Massey and Christos Papadopoulos, 12th Passive and Active 
Measurements Conference (PAM 2011), March 2011  

  Fingerprinting Custom Botnet Protocol Stacks, Steve DiBenedetto, 
Kaustubh Gadkari, Nicholas Diel, Andrea Steiner, Dan Massey and 
Christos Papadopoulos, Workshop on Secure Network Protocols 
(NPSec 2010) (in conjunction with ICNP 2010), October 2010  

  Dynamics of RIB Usage at an Edge Router (Poster), Kaustubh 
Gadkari, Steve DiBenedetto, Dan Massey and Christos 
Papadopoulos, 18th International Conference on Network Protocols 
(ICNP 2010), October 2010  

  Characterizing TCP Resets in Established Connections, Nicholas Diel, 
Kaustubh Gadkari, Steve DiBenedetto, Andrea Steiner and Christos 
Papadopoulos, Technical Report CS-08-102.  
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Quantifying Cache Hiding 

  Treat prefix groups as atomic blocks. 

Peer Name Number of 
Prefixes in Table 

Size of Largest 
Atomic Block  

GBLNETRU 	   345643 	   2557 	  

CENIC 	   341122 	   2557 	  

Sprint 	   338169 	   2557 	  

APAN 	   344810 	   2557 	  

ESNet 	   340874 	   2556 	  

AOL 	   338247 	   2556 	  

Hurricane- 
Electric 	   340402 	   2556 	  

Sprint Canada 	   339509 	   2556 	  

Level3 	   337701 	   2555 	  

AT&T 	   338368 	   2552 	  
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Line Card Memory Limitations 

  RIB stored in RAM (DRAM) 
  Large : N GB 
  Cheap : Approx. $200 per GB 
  Scaling not considered a problem 

  FIB stored on line cards (SRAM/TCAM) 
  Small : N MB 
  Expensive : Approx. $4000 per GB 
  FIB is the union of all RIBs 
  Scaling is considered a problem 

  IPv6 impact is unknown 
  Size of FIB after IPv6? 
  Lookups at speeds of 100G+? 
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Addressing Cache Hiding 

Cache 

12.13.1.1 

12.13.14.1 

12.13/16,1 

12.13/16,1 

FIB 

12.13/16,1 
12.13.14/24,2 

12.13.14/24,2 

12.13.14/24,2 

All packets are forwarded correctly. 
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Solution Space 

2/6/13 

          Table (FIB/RIB) 

Method 
FIB RIB 

Architectural •  Caching •  Edge-core 
separation  

Configuration-only •  Aggregation •  Aggregation 
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Uni-class Caching 

  Kim et. al. show that route caching is feasible, and 
may be necessary. 

  Cache only /24 prefixes. 
  This mitigates the cache hiding problem. 

  Achieves 99%+ hit rates with cache sizes of 100k 
entries. 
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Aggregation 

  Better than the naïve solution – leads to smaller FIBs. 
  Compress FIB entries based on next-hop 

information. 
  Can achieve 30 – 70% compression, based on 

aggregation algorithm. 
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Cache Miss Evaluation 

  Built simulator to 
evaluate effect of 
cache misses. 

  Simulator built for 
simplicity, not for 
optimal performance. 
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Handling Dynamic Route Updates 

  Investigate how dynamic updates affect route 
caches 
  Cache entries can be invalidated 

  How many updates actually affect cache entries? 
  How do we handle those updates that do affect 

cache entries? 
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Implementing Caching on Current 
Hardware 

  Investigate whether we can implement the caching 
scheme in current router hardware. 

  Ideally, routers should not need new hardware to 
use our caching solution. 
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Evaluation 

  To evict Nth entry from cache, attacker must send enough 
packets to that prefix and all cache entries below it 

  To evict i entries, attack rate required is 
  Pattack >= Pi * i 

  In low traffic interval, most popular prefix received 
240K packet in 5 mins, at an avg. packet rate of 803 
pps 

  Assuming cache size of 10K, attacker needs to send 8M 
pps to blow away cache 
  17.52M pps in high traffic interval 

  This traffic rate is higher than the line speed at our 
capture point (2M pps, assuming 60 byte packets) 
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Threat Model 

  Attacker knows, or can determine, set of popular and 
unpopular aggregates 

  Attacker can send packets at line speed 
  Attacker aims only to replace legitimate cache entries 

with bogus ones 
  Attacks on other infrastructure (e.g. DDoS) will trigger other 

defenses 
  Attack cannot be stealthy 

  Attack rate must compete with legitimate traffic 
  What is the packet rate required? 
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Future Work 

  We will investigate how to handle dynamic route 
updates 

  Further, we will investigate whether our caching 
solution can be implemented on existing router 
hardware 
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What is Optimal Caching? 

  Defined on a cache size N, finite network trace 
  When evicting a prefix choose the one that will not 

be used for the longest time in the future 
  This includes the current prefix! 
  Robust against one-off packets 

  Theoretical algorithm – please do not try to 
implement in practice 


