
Google Confidential and Proprietary

Localizing packet loss
In a large complex network

Nicolas Guilbaud nguilbaud@google.com
Ross Cartlidge rossc@google.com

Tuesday, February 5, 2013

mailto:nguilbaud@google.com
mailto:nguilbaud@google.com
mailto:rossc@google.com
mailto:rossc@google.com

Google Proprietary

Traditional network monitoring: White box

White box monitoring, it's basically asking the device and monitor its
vital parameters.

Unfortunately, this is far from being good enough, too many times the
device either 'lie' or does not tell you the whole picture.

A classical example is packets corruptions being reported on the
egress line card while being caused by a fault on the ingress to
fabric connection.

If we can't trust it, we need to test it.

Tuesday, February 5, 2013

Google Proprietary

Traditional network monitoring: White box

White box monitoring, it's basically asking the device and monitor its
vital parameters.

Unfortunately, this is far from being good enough, too many times the
device either 'lie' or does not tell you the whole picture.

A classical example is packets corruptions being reported on the
egress line card while being caused by a fault on the ingress to
fabric connection.

If we can't trust it, we need to test it.
CPU
usage ?Interface

errors?

Queue
drops ?

Tuesday, February 5, 2013

Google Proprietary

Traditional network monitoring: Black box

Black box monitoring consists in sending synthetic traffic that mimics
production traffic and analyse characteristics such as packet loss,
latency, jitter, packet corruption, CoS misclassification,...

sender/
receiver

sender/
receiver sender/

receiver

sender/
receiversender/

receiver

Tuesday, February 5, 2013

Google Proprietary

Traditional network monitoring: Black box

Black box monitoring consists in sending synthetic traffic that mimics
production traffic and analyse characteristics such as packet loss,
latency, jitter, packet corruption, CoS misclassification,...

sender/
receiver

sender/
receiver sender/

receiver

sender/
receiversender/

receiver

Two major drawbacks:

• Only the best paths between the senders/
receivers are monitored.

• It is hard to isolate a faulty element

Tuesday, February 5, 2013

Google Proprietary

But that's not good enough

We want more, we want:

• We complete coverage. We want to test every single path in the
network. Not only the best paths.

• We want to localize the fault in near real-time (within a minute from
the event)

• We want to test the ability for a router to forward traffic, even when
it's not part of the protocol topology.

Tuesday, February 5, 2013

Google Confidential and Proprietary

How do we cover every
component ?
not only the best paths

Tuesday, February 5, 2013

Google Proprietary

We could be running “IPSLA” like process on each
node..

CPU/OS

Forwarding
Engine

CPU/OS

Forwarding
Engine

Router A Router B

Tuesday, February 5, 2013

Google Proprietary

We could be running “IPSLA” like process on each
node..

CPU/OS

Forwarding
Engine

CPU/OS

Forwarding
Engine

Router A Router B

But the traffic generated from the CPU
is not switched like the production
traffic.
The switching fabric is not in the
forwarding path.

Tuesday, February 5, 2013

Google Proprietary

Exhaustive coverage.

We can't just rely on destination based routing, otherwise only the best
paths between two locations would get tested.

We source route the test packets instead.

With source routing, we can target what gets monitored and ensure full
layer3 coverage.

For layer3 paths composed with link aggregation groups, we cover
them by creating n distinct flows per individual link (today we use
n=4). The flows need to match the hashing algorithm configured.

Tuesday, February 5, 2013

Google Proprietary

Exhaustive coverage.

More importantly, instead of testing simply interfaces and nodes, we
test the ability for a node to forward a packet from every ingress to
every egress interfaces.

We test every combination of ingress to egress for each node.

ingress

egress 1

egress 2

egress 3

Tuesday, February 5, 2013

Google Proprietary

Exhaustive coverage: Testing every forwarding path

Quick illustration of what the coverage of a typical Core, Distribution,
Access topology would look like.

Tuesday, February 5, 2013

Google Proprietary

Exhaustive coverage: Testing every forwarding path

Quick illustration of what the coverage of a typical Core, Distribution,
Access topology would look like.

Tuesday, February 5, 2013

Google Proprietary

Exhaustive coverage: Testing every forwarding path

Quick illustration of what the coverage of a typical Core, Distribution,
Access topology would look like.

All tests packets are processed in a strict
high priority queue to avoid false positives
due to traffic bursts and queueing.

Any loss in this CoS is worth being
correlated and reported.

Tuesday, February 5, 2013

Google Confidential and Proprietary

How do we localize faulty
components ?
Without manual troubleshooting.

Tuesday, February 5, 2013

Google Proprietary

The role of the correlator.

• It must find the faulty links
• Have very few false positives or negatives. Crying wolf means

alerts will be ignored.

• Calculate a magnitude for the fault.

• Create time series.

Tuesday, February 5, 2013

Google Proprietary

Simple Network Example

Tuesday, February 5, 2013

Google Proprietary

Simple problem

Tuesday, February 5, 2013

Google Proprietary

Simple problem

Tuesday, February 5, 2013

Google Proprietary

Not so simple :-)

• A logical link could be a bundle of 8 physical links

• One path through a link could go through a good physical link while
another could go through a bad link.

• The hash is not known - and hash salting to eliminate polarisation
makes it nearly impossible.

• A link may have a low packet loss so many paths through the link
could be clear, while others could have loss.

• The simple correlator would (and does) fail in these cases. It can't
handle a link being both good and bad.

• So how do we handle this duality?

Tuesday, February 5, 2013

Google Proprietary

Not so simple :-)

• A logical link could be a bundle of 8 physical links

• One path through a link could go through a good physical link while
another could go through a bad link.

• The hash is not known - and hash salting to eliminate polarisation
makes it nearly impossible.

• A link may have a low packet loss so many paths through the link
could be clear, while others could have loss.

• The simple correlator would (and does) fail in these cases. It can't
handle a link being both good and bad.

• So how do we handle this duality?

Tuesday, February 5, 2013

Google Proprietary

Multiple faults in the network

Tuesday, February 5, 2013

Google Proprietary

What we tried first

• They are not black and white so lets use grey :-)
• Look at each path through each link
• Average the loss and get a loss value for each link
• Bad links spread their loss to good links via paths they shared
• Viewed graphically you could see the places where loss was

occurring but way too fuzzy for NOC alerts.
• We tried to sharpen with multi-passes. Remove the down links,

recalculate the losses, Remove the worst, Rinse and repeat...
• Screamed of an optimisation problem :-)

Tuesday, February 5, 2013

Google Proprietary

Framing the problem as an optimisation problem

• We have results for each path, the packet loss from 0 to 100%
• We can classify each path as either good or faulty
• A faulty path must be caused by a faulty link in the path
• So the problem can be framed as:-

"Find the best list of links that explains each faulty path"
• Traditional cover problem.
• Just need to define best

Tuesday, February 5, 2013

Google Proprietary

Finding the best list of faulty links

• This was the most experimental part
• Lots of trial and error
• From testing on real problems we settled on a combination of:-

a. Minimising the number of links creating our known faults
b. Making the results as unambiguous as possible
c. Biasing away from too simple solutions.

• We framed this as a linear programming problem
• Delivered very reliable and focussed results
• Good enough to raise alerts to network operations. No false

positives
• Network Operations trust the signal. Kept alerts to production

problems
• Also maintained a dashboard to allow pro-active monitoring

Tuesday, February 5, 2013

Google Proprietary

Using the good paths

• We only used the faulty paths to find the faulty links
• What can the the good paths be used for?
• Once we know where the bad links are we can then attribute all

loss on a path to the bad links in each path
• So we can use the good paths to calculate the magnitude of the

fault.
• For example, if a link has 10 paths traversing it each path has sent

10 packets and 1 path only receives 8 back then the loss is
1 - (10*9+8)/10*10 = 0.012 or 2%.

• Allows resolution far better than supplied by any one path.
• Create a timeseries of packet loss for each link in the network

Tuesday, February 5, 2013

Google Proprietary

Low level loss

• How to detect losses that doesn't happen every 15s?
• Inspired by Radio Astronomy long exposures
• Add new timeseries thats reports highest loss on path over longer

time (say 5m, 30m, ...)

• Correlate on this variable so if 5 different paths, say, have loss in 5
mins, but only 1 in any one 15s poll, it can still correlate
unambiguously.

• Trade off temporal accuracy for loss sensitivity

• We can have a hierarchy of alerts from high level, short term to low
level long term.

• In production now. Found to be a very useful signal as existing
blackbox and whitebox monitoring is not good at very low-level and
intermittent loss.

Tuesday, February 5, 2013

Google Proprietary

Performance vis-à-vis traditional monitoring.

• Precise pinpointing of problem is much better that blackbox. We
know exact location of faults, not just the existence of a fault

• Very low pps is required for very accurate results. To monitor n links
with the ability to detect loss lower than .01% we are only sending
20n pps. Orders of magnitude lower that our existing blackbox or
whitebox monitoring.

• As we test what a device does rather than what it says it does, we
get a more reliable indication of performance.

• No need to craft whitebox monitoring for each element
• We get the accuracy of whitebox with the simplicity of blackbox for

a lower overhead than both.
• We correlate our results to the existing blackbox and whitebox

systems.

Tuesday, February 5, 2013

Google Confidential and Proprietary

How do we build a good
set of paths?

Tuesday, February 5, 2013

Google Proprietary

What is a good map?

• Create paths from prober to prober and from prober to devices
• Cover every link multiple times
• Ability to isolate multiple simultaneous faults
• Minimise degradation when faults occur
• Minimise the number of paths
• Spread the paths as even as possible across the routers
• Be easy to deploy to the network and u[date when the network

changes

Tuesday, February 5, 2013

Google Proprietary

How the mapper works

• It is an NP complete problem so we solve the problem heuristically
• Enumerate all links
• Create paths to each link from multiple probers. Follow

approximate shortest path. Add weights to used paths to push
paths away from heavily used links

• Generate paths to least covered links first
• Keep tabs of number of transit links and keep below a device

specific maximum
• Stop once every link is covered by a minimum number of paths

Tuesday, February 5, 2013

Google Proprietary

How well did it work ?

• Paths with high diversity are created
• Scales linearly with number of links
• All links are covered
• Handle multiple simultaneous failures very well
• Allows for incremental addition of paths after small network

changes
• Doesn't add too much state to the network

Tuesday, February 5, 2013

Google Proprietary

What's next ?

• Automatically update map as network changes
• Use feedback from the correlator to improve the path design
• Investigate other heuristics for path generation

Tuesday, February 5, 2013

Google Confidential and Proprietary

What did we learn ?

Tuesday, February 5, 2013

Google Proprietary

It works

• It is working pretty well, we found problems that nobody knew
about

• Silent drops are not that frequent but it does happen regularly
• The system finds low level packet loss down to 0.01%
• It takes about 60 seconds with our current deployment, from fault to

localization
• We can test components (interfaces, links, devices) not yet in

production. Because we use source based routing (in the form of
RSVP-TE LSPs signaled with strict static EROs)

• We found RSVP signaling errors (bugs or shortcuts to improve
convergence time)

Tuesday, February 5, 2013

Google Proprietary

Limitations

•The “pathing” is done at layer3, when covering aggregated links,
we rely on the vendors hashing algorithm to map different flows onto
different components. The mapper takes as a constraint that each
“bundle” needs to be covered with a minimum amount of flows.
•It creates a lot of state. For a 16 interfaces device it creates a
combination of at least 120 tests. When using RSVP-TE that results in
240 LSPs. Multiply that by hundreds for a large network and the RSVP
state and amount of nexthops can become a problem.
The "mapping" and correlation can become fairly complex to limit the
amount of of state, especially on transit nodes.
•It takes a fair amount of processing power to:

o create and optimize the mapping
o create and send the probes on each test path
o collect the results
o correlate and report

Tuesday, February 5, 2013

Google Confidential and Proprietary

What's next ?
Reducing state

Tuesday, February 5, 2013

Google Proprietary

Reduce state

An alternative is not to use RSVP but keep the state in the test
packets instead.

Let say we want to test:
A -> B -> C -> D -> B -> A

A B

C

D

Tuesday, February 5, 2013

Google Proprietary

Reduce state: One hop static LSP

We can create static LSPs that direct traffic to a specific interface and
POP the label.

 Interface 1

 A B

 D

 C

1 1

2

3

1

1
2

2

1

Tuesday, February 5, 2013

Google Proprietary

Reduce state: One hop static LSP

We want to send a packet through the following path:
A:1 ->B:1
B:2 ->C:1
C:2 ->D:2
D:1 ->B:2
B:1 ->A:1

 A B

 D

 C

1 1

2

3

1

1
2

2

Tuesday, February 5, 2013

Google Proprietary

Reduce state: One hop static LSP

We just build a packet with the following stacked labels:
[1, 2, 2, 1, 1(S)]

Router A has a static LSP that says:
For packets with incoming label 1, pop the label and forward to interface

1.

 A B

 D

 C

1 1

2

3

1

1
2

2

Tuesday, February 5, 2013

Google Proprietary

Reduce state: One hop static LSP

1. Router A: [1, 2, 2, 1, 1]
=>POP label 1 and fwd to Router B

2. Router B: [2, 2, 1, 1]
=>POP label 2 and fwd to Router C

3. Router C: [2, 1, 1]
=>POP label 2 and fwd to Router D

4. Router D: [1, 1]
=>POP label 1 and fwd to Router B

5. Router B: [1]
=>POP label 1 and fwd to Router A

Router A looks up the IP dest address and
sends the packet to its destination.

 A B

 D

 C

1 1

2

3

1

1
2

2

Tuesday, February 5, 2013

Google Proprietary

Questions ?

nguilbaud@google.com
rossc@google.com

Tuesday, February 5, 2013

mailto:nguilbaud@google.com
mailto:nguilbaud@google.com
mailto:nguilbaud@google.com
mailto:nguilbaud@google.com

