
Sign-in here: 

http://tinyurl.com/nanog57-roster
Workshop Slides: 

http://tinyurl.com/nanog57-slides

copyright Indiana 
University



Openflow 90 minutes

Indiana Center for Network Translational Research and Education

the research arm of

http://incntre.iu.edu
http://globalnoc.iu.edu


Instructors
Steven Wallace

ssw@iu.edu

Chris Small
chsmall@indiana.edu

31 October 2012



Tools that we'll be using today...

● Amazon Web Services (EC2)
● Open VSwitch - the OpenVSwitch 

distribution includes an OF controller (i.e., 
ovs-controller) and a useful command-line 
utility ovs-ofclt.

● WireShark - an open source network "sniffer"
● Mininet - open source virtual network on 

desktop

http://openvswitch.org/
http://www.wireshark.org
http://www.wireshark.org
http://mininet.github.com/


Teaching HTML to explain the WWW

<h1>OpenFlow's promise is its application,
not its internal workings</h1>

Yet much of today is about OpenFlow's internal 
workings, and very little will be polished 
examples of its application.



Logistics
Open the roster spreadsheet (http://tinyurl.com/nanog57-roster)

Find your row number, call it X

Open two terminal windows via:
ssh  openflow@vmX.training.incntre.org

Username: openflow
Password: openflow

Point your browser to:

http://vmX.training.incntre.org:8090/guacamole
%p

http://tinyurl.com/nanog57-roster


What is OpenFlow?

● It's a protocol for control the forwarding 
behavior of Ethernet switches in a Software 
Defined Network

● Initially released by the Clean Slate Program 
at Stanford, its specification is now 
maintained by the Open Networking Forum

● Most of today's material is based on the 
OpenFlow 1.0 specification

● In April 2012, OpenFlow 1.3 was approved 
(see also 4/2012 ONF white paper)

http://www.technologyreview.com/web/22120/
http://www.technologyreview.com/web/22120/
http://www.technologyreview.com/web/22120/
http://cleanslate.stanford.edu/
https://www.opennetworking.org/
https://www.opennetworking.org/documents
https://www.opennetworking.org/documents
https://www.opennetworking.org/images/stories/downloads/specification/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/white-papers/wp-sdn-newnorm.pdf


Ethernet Switch 

Table-based (e.g., TCAM/CAM) high-speed forwarding engine

Embedded Operating System

Data Plane

Control Plane

Features Value Add

CLI, SNMP, TFTP



OpenFlow Controller

Table-based (e.g., TCAM/CAM) high-speed forwarding engine

Embedded Operating System implements OpenFlow

Data Plane

Control Plane

Features
Value Add

OpenFlow Protocol



OpenFlow Controller
Features

Value Add

OpenFlow Protocol
Each switch 

connects directly with 
OF Controller



Flow Table

Header Fields Counters Actions

Ingress Port
Ethernet Source Addr

Ethernet Dest Addr
Ethernet Type

VLAN id
VLAN Priority

IP Source Addr
IP Dest Addr
IP Protocol

IP ToS
ICMP type
ICMP code

Per Flow Counters
Received Packets
Received Bytes

Duration seconds
Duration nanosecconds

Forward
(All, Controller, Local, 
Table, IN_port, Port# 

Normal, Flood)

Enqueue
Drop

Modify-Field

Priority



Flow Table

Header Fields Counters Actions

If ingress port == 2 Drop packet

if IP_addr == 129.79.1.1 re-write to 10.0.1.1, forward 
port 3

if Eth Addr == 00:45:23 add VLAN id 110, forward 
port 2

if ingress port == 4 forward port 5, 6

if Eth Type == ARP forward CONTROLLER

If ingress port == 2 && Eth 
Type == ARP forward NORMAL

Priority

32768

32768

32768

32768

32768

40000



Special Ports

Controller (sends packet to the controller)

Normal (sends packet to non-openflow function 
of switch)

Local (can be used for in-band controller 
connection)

Flood (flood the packet using normal pipeline)



Flow Table

Header Fields Counters Actions

If ingress port == 2 Drop packet

if IP_addr == 129.79.1.1 re-write to 10.0.1.1, forward 
port 3

Priority

32768

32768

Each Flow Table entry has two timers: idle_timeout
seconds of no matching packets
after which the flow is removed
zero means never timeout

hard_timeout
seconds after which the flow is
removed
zero mean never timeout

If both idle_timeout and hard_timeout are set, then the flow is removed when the first of the two expires. 



Populating the Flow Table

Proactive
Rules are relatively static, controller places 
rules in switch before they are required.

Reactive
Rules are dynamic. Packets which have no 
match are sent to the controller (packet in). 
Controller creates appropriate rule and 
sends packet back to switch (packet out) for 
processing.



Controller and Switch 
Communication

● Mode - Controller vs. Listener
○ TCP Communication, who initiates conversation

● Mode and Populating Flow Table 
independent



Example application:
topology discovery

OpenFlow Controller



Bootstrapping a new switch

Switch requires minimal initial configuration (e.
g., IP address, default GW, and OpenFlow 
controller)

Switch connects to controller. Controller 
requests things like a list of ports, etc.

Controller proceeds to determine the switch's 
location.



Bootstrapping a new switch

Controller proactively places a rule in the switch.

If ether_type = LLDP, actions=output:controller

Then the controller creates an LLDP packet, sends it to the 
switch, and instructs the switch to send it out a port (repeat 
for all ports).

Since all switches in the controller's network have a rule to 
send LLDP packets to the controller, the controller is able 
to determine the topology.



OpenFlow 1.0 to 1.1



Flow Table
Header Fields Counters Actions Priority

Match Fields Priority Counters Instructions Cookie

1.0

1.1

media data packet Action Set

New Data Structure in Pipeline

Group ID Type Counters Action 
Buckets

.....

.....



Packet Processing

1.0
Does packet match flow table entry, if so, 

perform action.

1.1
Does packet match flow table entry, if so, 

look at instructions...



Actions vs. Instructions

1.1
● Flow entries contain instructions.
● Instructions may be immediate action(s), or
● instructions may set actions in the action set
● Instructions can also change pipeline 

processing: 
○ Goto table X
○ Goto group table entry x



More Tables

1.1

● Allows for multiple flowtables
● Includes a group table with multiple group 

table types
● Instructions can jump to other tables, but 

only in a positive direction



OpenFlow QoS

OF 1.0
● Optional action "Enqueue"

Forwards packet through a queue attached 
to a port. The behavior of the queue is 
determined outside the scope of OF.

● Header fields can include VLAN priority and 
IP ToS, so they can be matched against and 
re-written.



OpenFlow QoS

OF 1.3
● Stuff from 1.0
● New table "Meter Table"

Meter Identifier Meter Bands Counters

32 bit integer
used to identify the meter

list of meter bands
each band specifies rate and behavior



OpenFlow QoS (1.3 cont.)

Meter Identifier Meter Bands Counters

Match Fields Priority Counters Instructions TimeoutsTimeouts Cooke

New instruction
Meter meter_id

Band Type Rate Counters Type Specific Arguments

drop
or

remark DSCP
kb/s
burst



OpenFlow QoS (1.3 cont.)

Meter Identifier Meter Bands Counters

Band Type Rate Counters Type Specific Arguments

drop
or

remark DSCP
kb/s
burst

One or more Meter Bands
 per Meter Table Entry

"the meter applies the meter band 
with the highest configured rate 
that is lower than the current 
measured rate"



Hands-on with OpenFlow
(quick review of the table)

Header Fields Counters Actions

Ingress Port
Ethernet Source Addr

Ethernet Dest Addr
Ethernet Type

VLAN id
VLAN Priority

IP Source Addr
IP Dest Addr
IP Protocol

IP ToS
ICMP type
ICMP code

Per Flow Counters
Received Packets
Received Bytes

Duration seconds
Duration nanosecconds

Forward
(All, Controller, Local, 
Table, IN_port, Port# 

Normal, Flood)

Enqueue
Drop

Modify-Field

Priority



Hands-on with OpenFlow

OpenFlow Controller

No
rm

al
ly 

sw
itc

h 
in

itia
te

s 
a

 c
on

ne
ct

io
n 

to
 it

s 
co

nt
ro

lle
r

Although not part of the OF spec, many 
switches support a passive OF connection, 
where the switch listens for a connection.

ovs-ofctl

We're going to use ovs-ofctl to query 
the switch's status.

Newer versions of OpenVSwitch do not 
support remote passive connections. 
Some hardware supports passive 
connection and some doesn't.

We will use local connections in this 
hands-on demonstration



Mininet

We will be using Mininet to simulate switches and hosts in 
a network.

Mininet uses OpenVSwitch as the switch and creates LXC 
Container VMs as hosts

Once started, the mininet prompt "mininet>" allows 
commands to be run on its virtual hosts. For example
mininet>h2 ping h3
causes host h2 to ping host h3

 



Host h2
IP:10.0.0.2

eth0

Host h3
IP:10.0.0.3

eth0

Switch s1

eth1 eth2

dp0

To start mininet and construct a simple network, run 
the following in one of the terminal windows:

$sudo mn --mac --switch ovsk --controller remote
OpenFlow Switch
Periodically attempting to 
connect to controller on 
lo:6633
Also listening on dp0



Getting WireShark Ready (something 
interesting coming up)

configure WireShark to capture on the "lo" 
interface

Type "of" (without the quotes) in the WireShark 
Filter



A bit about ovs-ofctl

● packaged with openvswitch-common
● alternative to dpctl (openflow reference 

controller)
● command-line utility that sends basic 

Openflow messages
○ useful for viewing switch port and flow stats, plus 

manually inserting flow entries
○ tool for early debugging

● Talks directly to the switch
○ This does not require a controller

● Switch must support a listener port (normally 
via TCP, but in our case via dp0



First Step!
● Run:

$ sudo ovs-ofctl show dp0
■ The 'show' command connects to the switch and 

prints out port state and OF capabilities
● What were the results?

● Type:
$ sudo ovs-ofctl dump-flows dp0

● Need to sudo when using a local datapath socket (dp0) 
because Mininet/OpenVSwitch creates it as root

● No flow? Start the ping again using mininet and recheck



ovs-ofctl - show

$ sudo ovs-ofctl show dp0
OFPT_FEATURES_REPLY (xid=0x1): ver:0x1, dpid:0000000000000001
n_tables:255, n_buffers:256
features: capabilities:0xc7, actions:0xfff
1(s1-eth1): addr:3a:e2:98:4e:fe:aa
    config:     0
    state:      0
    current:    10GB-FD COPPER
2(s1-eth2): addr:36:29:c4:d7:a4:c1
    config:     0
    state:      0
    current:    10GB-FD COPPER
LOCAL(dp0): addr:ca:5d:78:2d:b6:40
    config:     PORT_DOWN
    state:      LINK_DOWN
OFPT_GET_CONFIG_REPLY (xid=0x3): frags=normal miss_send_len=0



ovs-ofctl dump-flows

● sudo ovs-ofctl dump-flows dp0
○ Gives us information about the flows installed
○ Rule itself
○ Timeouts
○ Actions
○ Packets and bytes processed by flow



ovs-ofctl dump-flows

$ sudo ovs-ofctl dump-flows dp0

1. NXST_FLOW reply (xid=0x4):
2. cookie=0x0, duration=30.625s, table=4, n_packets=0, 
n_bytes=2612, idle_timeout=180,priority=33000,in_port=1 
actions=output:2
3. cookie=0x0, duration=22.5s, table=4, n_packets=0, 
n_bytes=2612, idle_timeout=180,priority=33000,in_port=2 
actions=output:1 



ovs-ofctl dump-ports

$ sudo ovs-ofctl dump-ports dp0
- Gives physical port information
- Rx, tx counters
- Error counters   

1. OFPST_PORT reply (xid=0x1): 14 ports
2. port 2: rx pkts=25211, bytes=3856488, drop=0, errs=0, 
frame=0, over=0, crc=0tx pkts=7144, bytes=767594, 
drop=0, errs=0,coll=0
3. port 5: rx pkts=18235, bytes=3142702, drop=0, errs=0, 
frame=0, over=0, crc=0tx pkts=0, bytes=0, drop=0, errs=0, 
coll=0 



Host h2
IP:10.0.0.2

eth0

Host h3
IP:10.0.0.3

eth0

Switch s1

eth1 eth2

dp0

OpenFlow Switch
Periodically attempting to 
connect to controller on 
lo:6633
Also listening on dp0

Exercise #1

So let's see if the network is working. Ping h2 from h3 using the following command:

mininet>h2 ping h3

After a bit you can type control-C to stop the ping. What happened?

In the other terminal windows start the ovs-controller:

$sudo ovs-controller ptcp:&

Now try the pings again.

Check out WireShark!



Host h2
IP:10.0.0.2

eth0

Host h3
IP:10.0.0.3

eth0

Switch s1

eth1 eth2

dp0

ovs-controller

Learning Switch



Openflow Learning Switch

Check flow table
$sudo ovs-ofctl dump-flows dp0



Learning Switch 

What is the state of the flow table?

What is the ovs-controller workflow?

What happens when a broadcast packet gets 
sent? Multicast?



Control-C ovs-controller

In that window where you started ovs-
controller, enter "fg" then a control-C to kill the 
controller. We'll get back to it later.



Exercise #2

Using ovs-ofctl to insert simple, port-based 
rules

Let's make sure switch has no existing flows:
$sudo ovs-ofctl del-flows dp0



Host h2
IP:10.0.0.2

eth0

ovs-ofctl process

$sudo ovs-ofctl add-flow dp0 idle_timeout=180,priority=33000,in_port=1,actions=output:2
$sudo ovs-ofctl add-flow dp0 idle_timeout=180,priority=33000,in_port=2,actions=output:1

mininet> h2 ping h3

Host h3
IP:10.0.0.3

eth0

Switch s1

eth1 eth2

dp0

Port-based Rules



Do the pings work?

What do you see with 
$ sudo ovs-ofctl dump-flows dp0

Do the counters increase as expected?

What's going on with the timeouts?



Exercise #3 - Moving up the stack...

First rule was port-based.

Next rule is IP source address-based.



type:
$ sudo ovs-ofctl add-flow dp0 idle_timeout=180,priority=33001,dl_type=0x800,nw_src=10.
0.0.2,actions=output:2
$ sudo ovs-ofctl add-flow dp0 idle_timeout=180,priority=33001,dl_type=0x800,nw_src=10.
0.0.3,actions=output:1

Host h2
IP:10.0.0.2

eth0

ovs-ofctl process

Host h3
IP:10.0.0.3

eth0

Switch s1

eth1 eth2

dp0

IP Address-based Rules



Do the pings work?

Did the port-based rules timeout?

If there are no port-based rules, why would the 
pings fail?

Can you verify this hypothesis by looking at the 
counters?

 



Example of OpenFlow's Game Changing Potential

if “Floor Plan Entropy” has got your bisection bandwidth 
down, build fat tree networks based on low-cost switches 
by programming the network for the data center via 
Openflow (e.g., PortLand)

http://afitc.gunter.af.mil/2011Presentations/SeminarSessions/Juniper_NextGenerationDataCenter.pdf
http://www.cs.washington.edu/education/courses/csep524/99wi/lectures/lecture7/sld006.htm
http://www.cs.washington.edu/education/courses/csep524/99wi/lectures/lecture7/sld006.htm
http://cseweb.ucsd.edu/~vahdat/papers/portland-sigcomm09.pdf
http://cseweb.ucsd.edu/~vahdat/papers/portland-sigcomm09.pdf

