

Lots of Changes

'Cause the IETF likes change...

- SLAAC vs DHCP
- Identifying users/machines
- Interface "magic"
- Org/political challenges

'Cause the IETF likes change...

- App changes (esp. browsers)
- Policy changes (PTR)
- Security and "broadcast domain" changes
- IPSEC
- Continually evolving ecosystem

I'm a Mac

DUID > Mac address

- Mac address as ID is flawed:
 - Not always unique
 - Can be altered
 - Multi-interface hosts confuse things
- But it's what most of the eyeballs on the Internet are ID'ed by currently
- DUID (DHCP Unique Identifier) is the replacement in IPv6

What DUIDs do right

- One DUID per DHCP server or client
- One Identity Association (IA) per network interface on a host
- A host can DHCP for all interfaces via DUID/ IA as unique key

Where DUIDs don't work...

- Anyone using mac address for identification or filtering
- Anyone trying to correlate IPv4 and IPv6 to the same machine/user
- Persistent storage of DUID may cause surprises

But I do dual stack...

How to correlate all addrs to same client:

 draft in ietf: draft-ietf-dhc-dhcpv6-clientlink-layer-addr-opt (headed to IESG)

circuit-id/remote-id work as with DHCPv4

Happy Eyeballs

IPv6. Yes. Have some.

Original plan: Always use IPv6/AAAA if available

 Result: poor user experience (long timeouts, use of slower links, etc.)

Err... We meant Happy...

- Next attempt was to specify draft/RFC
- "But that doubles DNS traffic"...
- And OS and browser folks both dived on it

Hence "Hampering Eyeballs"

- Testing by Geoff Huston
- Problems with browsers
- Lots of problems with OS X
- Windows trying to fix at network layer...

How do it know?

Source/Destination Address

- Multiple interfaces w/ multiple addrs
- Multiple prefixes
- Dual stack...
- How to choose...
- RFC 6724 (formerly RFC 3484)

RFC 6724

- Types of addrs:
 - IPv6: GUA, ULA, Link Local, privacy
 - IPv4: public, APIPA, 1918
- Some better than others
 - Consider scope, type, prefix length
 - Avoid deprecated
- Allow local policy overrides

Debugging will be fun

- Decisions time/context sensitive
- How to train staff and users
- Local tools to dump all info
- Packet sniffers?

And what don't we know yet

Default route

- Multiple default routes from RAs
- No more HSRP/VRRP! Maybe...
- But does this actually work?
- Not all Oss did the right thing (Fedora, ???)

What else will we find...

 AIX makes multiple AAAA/ip6.arpa queries with no working IPv6 stack

And there will be more...

RAs (Why can't we get along?)

IPv4 routing

- Static default route
- DHCP server gives default route
- Changing network might miss changing DHCP def route

IPv6 routing

- Static default route (link local). lck.
- DHCP server can't give default route...
- Folks changing routers probably own RA configs

Layer 9 (political)

- Different groups for DNS, DHCP, routers, RAs, IP addr assignment?
- Can't just change DHCPv6 or RA, need to coordinate with systems, network, maybe security

Reverse/PTR goo

How did this all start?

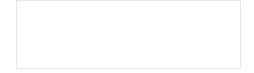
ftp (ftp.uu.net, ftp.wustl.edu)

SMTP

Security devices

Silly web things

How did we do it IPv4


- By hand (ow)
- Scripts
- \$GENERATE
- IPAM

How would that work for IPv6

- A single subnet is a /64
- A /64 has 18 quintillion (4 bil x 4 bil) addrs
- A PTR record has 34 labels in IPv6
- Anyone got a computer with enough disk or RAM to hold one /64 zone file?

So what are we left with?

- Admit that PTRs are pointless
- Pre-populate (assuming FTL travel...)
- Pre-populate statics for routers & big servers
- As above plus DHCP server adding clients
- Lie on the fly (if not doing DNSSEC)

ICMPv6

ICMPv6

Required for:

- DAD
- Finding routers (RA/SLAAC)
- Finding servers (DHCP)
- PMTUD
- Connectivity (echo request/response)
- Network errors

ICMPv6 Filtering

 Filter it all and you don't have a useful network

 ICMPv6 much more detailed/precise in types and functions

RFC 4890 has excellent filtering practices

IPSEC Myth vs Reality

The Myth

IPSEC in IPv6 is better than IPv4 because it was designed in and mandated.

And the reality

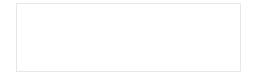
 RFCs said "MUST" support IPSEC (but softening to "SHOULD"...)

- Didn't define "support", let vendors do it
- Vendors shipped, didn't enable
- No PKI...

IETF Blue Light Special

The more things change...

... the more they keep changing


DHC: 19 drafts, 73 RFCs

■ IPv6: 12 drafts, 52 RFCs

More every IETF meeting

What to do?

- Join the WG mailing lists
- Come to IETF if you can
- Coordinate with other operators (BOF)
- Beat on vendors

Q&A