

Network-Centric Performance Monitoring

Seth Higgins, Global Ethernet Solutions

Shiggins@advaoptical.com

August 2012

TDM to Packet Evolution

Population growth and higher computing sophistication leads to more endpoints and more bandwidth, which can only be served economically by a packet-based infrastructure, so...

What are people buying now?

- Tools to operate and troubleshoot Ethernet/IP like SONET/SDH
- SLA's with substance, at TDM price per performance
- Synchronization, e.g. for mobile backhaul or algorithmic trading

© 2012 ADVA Optical Networking. All rights reserved. Confidential.

Components of carrier-class operation

- Turn-up and test
 - Low-touch provisioning
 - Bandwidth profile validation with RFC-2544 or Y.1564
- Service Assurance
 - Hardware implementation required at endpoints for timing accuracy
 - Threshold crossing alarms for all PM attributes
- Troubleshooting without truck rolls
 - Throughput/latency test to loopback
 - Synchronization testing tools
- EMS/NMS/OSS integration
 - Inventory, alarming, monthly SLA reports...

Primary Objectives

Reduce truck rolls

Accurate and scalable PM

Business case for Network OAM/PM

Net mprovement 36% 4% 24%	
Net mprovement 36% 4% 24%	
net mprovement 36% 4% 24%	
36% 4% 24%	
4% 24%	
24%	
10%	
10%	
83% \$250 \$500 \$75 \$425 ????	

Optical Networking

- 802.1ag CFM Connectivity Fault Management
- Y.1731 OAM (Operations, Administration and Maintenance) Service Assurance
- 802.3ah EFM (Ethernet in the First Mile) Dying Gasp

- Time-stamps are only as good as system clock synchronization
- Time-stamping must be done in hardware
 - No software interrupts or queuing delays
 - Accurate results regardless of load and scale
 - Nanosecond resolution
- Must customize test frame size, priority, rate, burst & schedule to mimic application traffic

Making sense of all that data...

- Need a scalable architecture for thousands of endpoints
- Data accumulation methods such as Telcordia GR-820 timebins
- Historical data storage at endpoints in case of lost connectivity
- Centralized collection and reporting with interface to OSS
- Comprehensive and efficient MIB for multivendor environments
- Threshold Crossing Alarms to pinpoint anomalies

Entity ID: ESA PROBE-1-1-1-2 Probe ID: L3test											
Configuration StatsConfig Statistics Thresholds											
Display: Table 🗸 Counters: General 👻 Filter Export 🖌 History											
TS	P2R-PKTS	R2P-PKTS	P2R-ERR-PKTS	R2P-ERR-PKTS	LOST-PKTS	SEQ-GAPS	OUTOFSEQ-ERR	P2R-LOST-PKTS	R2P-LOST-PKTS	P2	
current	2329	2329	0	0	0	0	0	0	0		
18:15:00	4171	4171	0	0	0	0	0	0	0		
18:00:00	922	922	0	0	0	0	0	0	0		
17:45:00	7501	4181	0	0	3320	1	0	38	3282		
17:30:00	7500	0	0	0	7500	0	0	0	7500		
17:15:00	7494	1825	0	0	5669	1	0	44	5625		
17:00:00	7499	7499	0	0	0	0	0	0	0		
16:45:00	7499	7499	0	0	0	0	0	0	0		
16:30:00	7498	6639	0	0	859	1	0	40	819		

Timing Distribution and Verification

- GPS timing distribution is costly to install and maintain
- Trusted wireline provider may provide synchronization service
- Mobile operator may distribute synchronization over-the-top
- Both need tools to deliver timing and monitor quality
 - Prove accuracy at time of network deployment
 - Monitor stability in normal operation
 - Diagnose problem if things go wrong

Synchronization Network PM

- Sync distribution topology?
- Slave clock performance?
- Connectivity performance?
- Are slaves tracking the masters?

Multiple operators and clock domains

Separate clocks vs. synchronization to UTC standard time and frequency

Backup/Reference Slides

IEEE 802.1ag – OAM Maintenance Entities

ITU Y.1731 – Service Assurance OAM

- Builds on 802.1ag functionality and adds:
 - Performance monitoring
 - Delay Measurement (DM), Loss Measurement (LM)
 - Under Study: Synthetic Loss Measurement (SLM)
 - Additional Fault Management: AIS & RDI
 - Test pattern and test mode (TST)
 - But no test methodology or standard test suite
 - Automatic Protection Switching (APS)
 - Other not so-common functions: MCC, VSM/EXM, 1DM.
- Y.1731 Defines its own hierarchical structure and Terminology
 - MEG Maintenance Entity Group (Similar to MD + MA)
 - MEPs and MIPs keep CFM Definitions

Optical Networking

Measuring One-Way Delay

- Delay from hops (inherit delay) and network congestion
- Time of Day Synchronization between end-points required
 - e.g. NTP, GPS and 1588v2
 - Endpoints should reference the same Time of Day source
- Synchronization errors occur when there is a negative time different between the TX and RX
 - Different Time of Day sources
 - Poor quality TOD source (precision and stratum level) or DCN congestion
 - Inaccurate time client algorithm
- Delay between timestamp and packet send/receive causes inaccuracy
 - Must timestamp at the moment of send/receive
 - Without hardware-based timestamping software interrupts cause problems

Ethernet Loss Measurement

- ETH-LM: Loss Measurement of customer data frames
 - Single-ended, on-demand, using ETH-LMM/ETH-LMR
 - Frame Loss measurements are calculated per Y.1731...
 - Frame Loss (far-end) = |TxFCf[tc] TxFCf[tp]| |RxFCf[tc] RxFCf[tp]|
 - Frame Loss (near-end) = |TxFCb[tc] TxFCb[tp]| |RxFCl[tc] RxFCl[tp]|

Entity ID: ESA PROBE-1-1-1-2 Probe ID: L3test											
Configuration StatsConfig Statistics Thresholds											
Display: Table 🗸 Counters: General 💟 Filter Export 🖌 History											
TS	P2R-PKTS	R2P-PKTS	P2R-ERR-PKTS	R2P-ERR-PKTS	LOST-PKTS	SEQ-GAPS	OUTOFSEQ-ERR	P2R-LOST-PKTS	R2P-LOST-PKTS	P2F	
current	2329	2329	0	0	0	0	0	0	0		
18:15:00	4171	4171	0	0	0	0	0	0	0		
18:00:00	922	922	0	0	0	0	0	0	0		
17:45:00	7501	4181	0	0	3320	1	0	38	3282		
17:30:00	7500	0	0	0	7500	0	0	0	7500		
17:15:00	7494	1825	0	0	5669	1	0	44	5625		
17:00:00	7499	7499	0	0	0	0	0	0	0		
16:45:00	7499	7499	0	0	0	0	0	0	0		
16:30:00	7498	6639	0	0	859	1	0	40	819		

- ETH-SLM: Synthetic Loss Measurement
 - New OAM function defines a way to measure Frame Loss Ratio
 - **Multipoint** support, in addition to Point-to-Point connectivity
 - Use sequence numbers for ETH-SLM/SLR synthetic frames
 - Count transmitted and received synthetic frames between MEPs

