

Challenges in End-to-End Network-Centric Performance Monitoring & Management

Aamer Akhter, Technical Leader aakhter@cisco.com

Performance Management Components

Network Requirements of Video Collaboration Apps

	One Way Latency	Jitter	Loss
Desktop Share (WebEx)	< 1000 ms	< 100 ms	< 0.05%
Video Conferencing	< 150 ms	< 30 ms	< 0.10%
TelePresence	< 150 ms	< 10 ms	< 0.05%
IP Telephony	< 150 ms	< 30 ms	< 0.10%
VC Soft Clients	< 150 ms	< 30 ms	< 0.10%

Media Synchronization	
audio + discrete info (slide show):	< 1000 ms
audio + pointed objects w/ narration:	< 200 ms
Lip Sync: audio advance over video:	< 30 ms
Lip Sync: audio delay following video:	< 100 ms

Monitoring Models

- Application performance validation Is the end user experience within acceptable bounds?
- Severity assessment

How serious is the problem?
Do I need to worry about it? Today?

Troubleshooting

Where is the problem? Application? Network?

Where in the network?

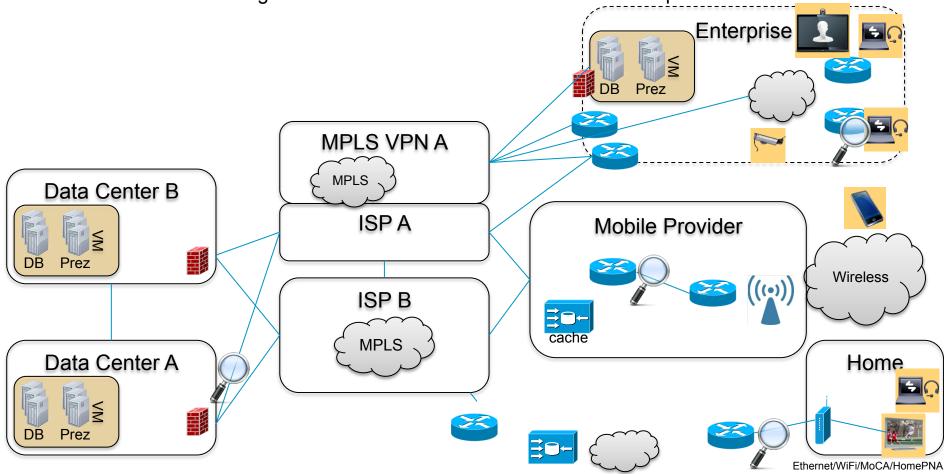
What is the problem?

Historical analysis

What is the timeline of changes & stress to the network?

Where and what is causing the change?

Do I need to do something different?

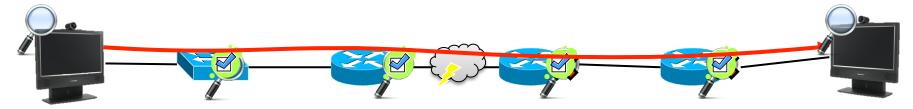

Endpoint vs. Network Points of MeasurementAn example using video flows

Metric	Metric	Routers/ Switches	Application
L a a 0	VLAN	$\overline{\checkmark}$	×
Layer 2	MAC address	$\overline{\checkmark}$	×
ID.	IP Address(s)	$\overline{\checkmark}$	$\overline{\checkmark}$
IP	DSCP	$\overline{\checkmark}$	$\overline{\checkmark}$
	RTP - Loss	$\overline{\checkmark}$	$\overline{\checkmark}$
Transport	TCP – Loss	(only loss event)	$\overline{\checkmark}$
G	TCP Round Trip Time	$\overline{\checkmark}$	$\overline{\checkmark}$
	RTP Jitter	$\overline{\checkmark}$	$\overline{\checkmark}$
	Frame Discards	×	$\overline{\checkmark}$
Media	Frame Repairs	×	$\overline{\checkmark}$
	Frame IDR Count	×	$\overline{\checkmark}$

Integrated Network and Application Monitoring

Applications are in best position to judge severity and presence of problem

Network & Management needs to be able to drill into details of problem resolution



Application and Topology Embedded Passive Monitoring

 Application and network nodes are able to discover & validate user traffic on hop by hop basis

Where possible, analysis built into forwarding hardware

- Allows for fault isolation and network span validation
- Per-application threshold and altering.
- Open interfaces management and reporting interfaces

