

Fast Incremental FIB Aggregation (FIFA)

Yaoqing Liu yliu6@memphis.edu The University of Memphis Dr. Lan Wang lanwang@memphis.edu The University of Memphis Dr. Beichuan Zhang bzhang@cs.arizona.edu The University of Arizona

10/26/12

netlab

10100

net lab **Outline**

- Motivation
- FIB aggregation overview
- Update handling
- Evaluation
- Operational impact
- Conclusion

Motivation (1)

- Fast growth of RIB=>Large FIB (Forwarding Information Base)
- Large FIB may not fit line-card memory
 - Expensive FIB memory
 - High cost for operators and customers
- FIB Aggregation is a local, low cost, and software solution to reduce FIB size [2]

Motivation (2)

- Existing works focus on reducing table size (as much as 70%) [1, 3, 4, 5]
- We also focus on reducing the aggregation overhead
- Most challenging problem: update handling
 - Quickly apply updates to aggregated table
 - Still maintain good compression ratio

Objectives:

- Extend line-card life-time by more than 5 years
- Reduce the overall processing time
- Reduce total number of FIB changes
- Mitigate single burst of FIB changes

Outline

- Motivation
- FIB aggregation overview
- Update handling
- Evaluation
- Operational impact
- Conclusion

What is FIB Aggregation?

• Merge multiple FIB entries into one

(a) Original FIB Entries Label Prefix Next Hop 141.225.0.0/16 Α 141.225.64.0/18 B 1 C 141.225.32.0/19 2 D 141.225.96.0/19 E 141.225.48.0/20 2

(b) Aggregated FIB Entries

	Label	Prefix	Next Hop
•	А	141.225.0.0/16	1
•	D	141.225.96.0/19	2
	Е	141.225.48.0/20	2

 100% same forwarding behaviors before and after aggregation

Our Proposed Algorithms-FIFA

- FIFA: Three fast incremental FIB aggregation algorithms based on Improved ORTC [1]
 - [+] Patricia Trie (Two passes, 2.5 faster, 44% memory)
 - [+] Strong forwarding correctness
- FIFA-S: Optimal Size Update (Global Optimality)
 [+] Always smallest FIB size, no re-aggregation
- FIFA-T: Minimal Time Update (Local Optimality)
 [+] Fastest
- FIFA-H: Hybrid Update (Regional Optimality)
 [+] No re-aggregation, small FIB changes

ORTC-Binary Tree Implementation

(,							
Label	Prefix	Next Hop					
A	141.225.0.0/16	1					
B	141.225.64.0/18	1					
C	141.225.32.0/19	1					
D	141.225.96.0/19	2					
E	141.225.48.0/20	2					

(a) Original FIB Entries

Original Tree

10/26/12

- Expand the binary tree to a complete binary tree in which a node has zero or two children
- Each expanded node has the same next hop as its nearest ancestor's

ORTC-Pass 2: Merge Next Hops

10/26/12

ORTC - Pass 3: Select Next Hop

10/26/12

Outline

- Motivation
- FIB aggregation overview
- Update handling
- Evaluation
- Operational impact
- Conclusion

FIFA-S Update Handling

10/26/12

FIB Size under FIFA

Outline

- Motivation
- FIB aggregation overview
- Update handling
- Evaluation
- Operational impact
- Conclusion

Evaluation Methodology (1)

- Data source: route-views ribs and updates
 - Data period: 01/01/2011-12/31/2011
 - Peer: 4.69.184.193 has most next AS hops among 36 peers: ~3000(estimate worst case)
- Data pre-processing: filter out all duplicate RIB updates
 - Total # updates after filtering: 54,095,965
- Use Next AS Hop as nexthop
 - Prefixes sharing the same next-AS-hop are likely to share the same iBGP neighbor and thus the same next- hop router [3]

- Experiment on a normal desktop of Intel Core 2 Quad 2.83GHz CPU
- Metrics
 - FIB size: total number of entries in aggregated FIB
 - **Time cost**: total update handling time
 - FIB changes: total number of FIB updates caused by all RIB updates
 - FIB burst: number of FIB updates caused by one individual RIB update, this can be 0

• Aggregate more than 50%

- Most RIB updates cause zero or one FIB change.
- About 99% FIB bursts are less than 10 FIB changes.
- With FIFA-S and FIFA-H, the heaviest FIB bursts have 568 and 1182 FIB changes, respectively
- FIFA-T usually has small FIB bursts, but the heaviest bursts can get very large (69,526) due to re-aggregation
- Pick the one fit for you

Attribute/ Option	FIFA-S	FIFA-T	FIFA-H
FIB Size	Optimal	Threshold	Threshold
Time Cost	Medium	Very low	Low
FIB Changes	High	Low	Medium
FIB Burst	Light	Heavy	Medium
Re- Aggregation	Νο	Fast	Νο

• FIB aggregation: extend a router's life up to 7 years

Operational impact

- Need to maintain aggregated FIB table in main memory
- FIFA-T
 - 1.1 times of RIB updates
 - 1.2 times longer processing time for each update to maintain forwarding correctness
 - periodical fast re-aggregations (0.2s)
- FIFA-S
 - 1.8 times of RIB updates
 - 2 times longer processing time to maintain optimal aggregated FIB size
 - No re-aggregation
- FIFA-H
 - 1.2 times of RIB updates
 - 1.9 times longer processing time to maintain forwarding correctness
 - No re-aggregation

- Benefits
 - Extend router lifetime for more than five years
 - Small overhead (time, FIB changes)
 - Costs (for all FIB aggregations)
 - Additional memory in control plane
 - Handle FIB bursts

- 1. R. Draves, C. King, S. Venkatachary, and B. D. Zill, "Constructing Optimal IP Routing Tables," in *Proc. IEEE INFOCOM*, 1999.
- 2. X. Zhao, D. J. Pacella, and J. Schiller, "Routing scalability: an operator's view," IEEE Journal on Selected Areas in Communications, vol. 28, no. 8, pp. 1262–1270, Oct. 2010.
- 3. X. Zhao, Y. Liu, L. Wang, and B. Zhang, "On the Aggregatability of Router Forwarding Tables," in *Proc. IEEE INFOCOM*, 2010.
- Y. Liu, X. Zhao, K. Nam, L. Wang, and B. Zhang, "Incremental forwarding table aggregation," in *Proc. IEEE Globecom*, 2010.
- Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh, J. Wang, and P. Francis, "SMALTA: practical and near-optimal FIB aggregation," in *Proc. CoNEXT*, 2011.

- NSF grants support
 - Lan Wang: 0721645
 - Beichuan Zhang: 0721863
- Lixia Zhang-UCLA

Thanks!

yliu6@memphis.edu Yaoqing Liu

10/26/12

Aggregated FIB

10/26/12

net lab

FIFA-T keeps the updated subtree optimal

FIFA-H keeps the updated subtree optimal before threshold FIFA-H keeps a bigger subtree (under CAP) optimal after threshold

SMALTA keeps the updated subtree correct forwarding for each update

10/26/12

FIB Size

- FIFA-S always has optimal FIB size and never does FIB reaggregation
- FIFA-T does fast re-aggregations when threshold is reached (180,000).
- FIFA-H keeps close to the threshold size when reaching it and never does FIB re-aggregation

- FIFA-S takes 108s, about 2 times of normal update, 2us/update
- FIFA-T takes 66s, about 1.2 times of normal update,1.2us/update (0.2s/fast re-aggregations)
- FIFA-H takes 100s, about 1.9 times of normal update 1.9us/ update
- SMALTA takes 237s, about 4.5 times of normal update 4.5us/

10/26/12 10/26

FIB Changes

- FIFA-S has 1.8 times of total FIB changes compared to normal update to maintain optimality of the aggregated FIB size (1.8 changes to FIB/update)
- FIFA-T has 1.1 times of total FIB changes compared to normal update
- FIFA-H has 1.2 time of total FIB changes compared to normal update
- SMALTA has 1.2 time of total FIB changes compared to normal update

10/26/12

FIB Burst

FIB Changes	Min	Мах	Med	==0	<=1	<=10	Total
FIFA-S	0	568	1	6,961,449	38,645,578	53,318,607	54,095,965
	-	- \	-	12.87%	71.43%	98.56%	100%
FIFA-T	0	69,526	1	6,150,664	49,704,177	53,919,736	54,095,965
	-	-	-	11.36%	91.88%	99.67%	100%
FIFA-H	0	1,182	1	6,232,328	48,997,278	53,784,161	54,095,965
	-	1	-	11.52%	90.57%	99.42%	100%

- Most RIB updates cause zero or one FIB change.
- About 99% FIB bursts are less than 10 FIB changes.
- With FIFA-S and FIFA-H, the heaviest FIB bursts have 568 and 1182 FIB changes, respectively
- FIFA-T usually has small FIB bursts, but the heaviest bursts can get very large (re-aggregation)
- Pick the one fit for you

	Mi n	Max	Me d	==0	<=1	<=10	Total
FIFA-S	0	568	1	6,961,44 9	38,645,5 78	53,318,6 07	54,095,9 65
	-	-	-	12.87%	71.43%	98.56%	100%
FIFA-T	0	69,52 6	1	6,150,66 4	49,704,1 77	53,919,7 36	54,095,9 65
	-	-	-	11.36%	91.88%	99.67%	100%
FIFA-H	0	1,182	1	6,232,32 8	48,997,2 78	53,784,1 61	54,095,9 65
	-	-	-	11.52%	90.57%	99.42%	100%
SMALTA	0	72,85 6	1	4,456,41 0	48,297,9 73	53,873,6 03	504,095, 976
	-	_	-	8.23%	89.28%	99.58%	100%

- FIFA-T usually has small FIB bursts, but the heaviest bursts can get very large
 - SMALTA has the heaviest FIB hurst.

Attribute/ Option	FIFA-S	FIFA-T	FIFA-H	SMALTA
FIB Size	Optimal	Thresho Id	Threshold	Threshold
Time Cost	Medium	Very low	Low	High
FIB Changes	High	Low	Medium	Medium
FIB Burst	Light	Heavy	Medium	Heavy
Re- Aggregatio n	Νο	Fast	Νο	Very Slow