

# **100G Deployment** Challenges & Lessons Learned from the ANI Prototype & SC11

Chris Tracy, Network Engineer

ESnet Engineering Group





## Outline



- Background on ANI
- 100Gbps optical transmission over the WAN
- 100G Ethernet Transmission
- Pluggable optics
- Testing, measurement, debugging, fault isolation
- Interoperability
- Case Study
- References

01/11/11

Lawrence Berkeley National Laboratory

# Advanced Networking Initiative (ANI)





# Advanced Networking Initiative (ANI)





# Advanced Networking Initiative (ANI)











#### System Perspective

- 100G Ethernet client signals IEEE P802.3ba [2]
  - on core-facing and customer/peer-facing edge ports
  - we have standardized on 100GBASE-LR10 CFPs 10x10 MSA [5]
- 100G client signals mapped into Optical Transport Unit 4 (OTU4)
  - ITU-T G.709 [3] for encapsulating 100GigE into OTU4
  - includes mandatory Forward Error Correction (FEC)
- transported using dual polarization-quadrature phase shift keying (DP-QPSK) technology with coherent detection [4]



Dual polarization-quadrature phase shift keying (DP-QPSK)

- DP: two independent optical signals, same frequency, orthogonal
  - single transmit laser, each signal carries half of the data
  - two polarizations  $\rightarrow$  lower modulation rate  $\rightarrow$  reduce optical bandwidth
  - allows 100G payload (plus overhead) to fit into 50GHz of spectrum



![](_page_9_Picture_1.jpeg)

Dual polarization-quadrature phase shift keying (DP-QPSK)

- QPSK: encode data by changing the phase of the optical carrier
  - compare to on-off keying (OOK), intensity modulation  $\rightarrow$  '0'=off, '1'=on
  - further reduces the symbol rate by half, sends twice as much data
- Together, DP and QPSK reduce required rate by a factor of 4

![](_page_9_Figure_7.jpeg)

![](_page_10_Figure_0.jpeg)

# Spectral Efficiency: 10 vs 40 vs 100Gb/s

![](_page_11_Figure_1.jpeg)

ESnet

# Spectral Efficiency: 10 vs 40 vs 100Gb/s

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_13_Picture_1.jpeg)

Coherent Detection (on the receiver) - Breakthrough Technology

- Technology originally developed circa 1980s [1] and [7]
  - advances in digital signal processing (# of gates, operating frequency) allowed coherent detection to emerge as disruptive technology in optical communications
- Offers significant improvement in noise tolerance over conventional direct detection schemes
- Able to compensate for propagation impairments such as chromatic dispersion (CD) and polarization mode dispersion (PMD)
  - dispersion compensating fibers are no longer needed in long-haul applications
- high-speed A/D samples incoming analog components
  - DSP ASIC to apply numerical adaptations, recover signal

![](_page_14_Picture_1.jpeg)

**Coherent Detection - Another Breakthrough** 

- works like a radio receiver source: [1], [4], and [7]
  - use a strong local oscillator tuned to the frequency of interest
- has provided a breakthrough in optical filtering capabilities
  - tunable optical filters exist but have never been cost-effective
- important impacts of this technology:
  - colorless ROADMs are [finally] becoming available by using coherent optical filtering - complete software reprogrammability
  - no longer need fixed channel filters (arrayed waveguide gratings)
  - no longer important to stay aligned to a 50 or 100 GHz ITU grid
  - spectrum can be used more efficiently, system is more flexible
  - wavelength selective elements would need to become flexible

![](_page_15_Picture_1.jpeg)

Amp placement and fiber span length has become very important

- 100G transmission for a given channel of optical spectrum is approaching Shannon limit
  - going higher than 100Gb/s, at the same distance, in same amount of spectrum, requires improvement of SNR (or just use more spectrum)
- Even if we just want to stay at 100Gb/s, reach is limited by OSNR
  - EDFAs contribute noise Amplified Spontaneous Emission (ASE)
  - on a long segment consisting of cascaded EDFAs, a few very long (high-loss) fiber runs degrades the system's SNR
  - could break up long spans and place more amplifiers for less loss between amps, or possibly deploy Raman, to improve SNR
  - otherwise, extra 100G re-gens could be required to get the desired reach - might not get "advertised" reach if amp spacing is not ideal

## Flexible Grid Concept

![](_page_16_Picture_1.jpeg)

At rates >100Gb/s, 50GHz spacing would require high SNR, will limit reach

• Future-proof network by allowing channels to occupy more spectrum

![](_page_16_Figure_4.jpeg)

## **100G Ethernet Transmission**

![](_page_17_Picture_1.jpeg)

Unlike 1G or 10G, 100G has embraced parallelism throughout its design

![](_page_17_Figure_3.jpeg)

## **100G Ethernet Transmission**

![](_page_18_Picture_1.jpeg)

Unlike 1G or 10G, 100G has embraced parallelism throughout its design

![](_page_18_Figure_3.jpeg)

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

# CFP Pluggable Optics - LR4 or LR10?

LR10 seems to be gaining popularity and vendor support Does your equipment support third-party optics?

- Similar to 1G & 10G pluggables, vendors sell certified optics
- 3rd party may not work (or be supported) by your equipment
- Digital Diagnostic Monitoring (optical power monitoring)
  - may or may not be supported, especially with uncertified optics
  - if supported may be aggregate, per-lane, or both

| Interface                             | Wavelength                             | Cost   | Fiber Type       | Connector                                     | Reach                      | Link<br>Budget | Comment                                              |
|---------------------------------------|----------------------------------------|--------|------------------|-----------------------------------------------|----------------------------|----------------|------------------------------------------------------|
| 100GBase-LR4                          | 4 x 25G WDM lanes<br>1294.53-1310.19nm | \$\$\$ | SMF              | SC / LC                                       | 10 km                      | 7.3 dB         | IEEE Standard [2]                                    |
| 100GBase-LR10                         | 10 x 10G WDM lanes<br>1521-1597nm      | \$\$   | SMF              | SC / LC                                       | 2-10 km*                   | 5.4 dB         | non-IEEE standard, no 10:4<br>gearbox, 10x10 MSA [5] |
| 100GBase-SR10                         | 10 x 10G parallel MMF<br>840-860nm     | \$     | parallel<br>MMFs | MPO / MTP                                     | 100 / 150 m<br>OM3/OM4 MMF | 8.3 dB         | IEEE Standard [2]                                    |
| 01/11/11                              |                                        | * rea  | ch may vary b    | oy model & trar                               | nsmit rate                 |                | 15                                                   |
| Lawrence Berkeley National Laboratory |                                        |        |                  | U.S. Department of Energy   Office of Science |                            |                |                                                      |

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

# **Pluggable Optics - Optical Power**

Field Testing of 100G Transceivers

- CFPs will appear to launch hot\* with standard power meters
- testing spectrum compliance and per-lane optical power with parallel optics on SMF requires use of an Optical Spectrum Analyzer
- some power meters may be "tunable" to measure different λ's (consider passband width, marginal for spectrum compliance)
- every CFP will have a slightly different Tx lane transmit profile
  - maximum reach over dark fiber may vary slightly depending on this profile

|                                                                                                      | Interface     | Lanes | Average Launch Power<br>Each Lane (min / max)  | Total Average Launch Power<br>(max) | Source            |  |  |
|------------------------------------------------------------------------------------------------------|---------------|-------|------------------------------------------------|-------------------------------------|-------------------|--|--|
|                                                                                                      | 100GBase-LR4  | 4     | -4.3 to 4.5 dBm                                | +10.5 dBm                           | [2]               |  |  |
|                                                                                                      | 100GBase-LR10 | 10    | -5.8 to 3.0 dBm (10km)<br>-6.9 to 3.0dBm (2km) | +13 dBm                             | [5]               |  |  |
| * we are referring to optical launch power, but we've found CFPs also run very hot, temperature-wise |               |       |                                                |                                     |                   |  |  |
| Lawrence Berkeley National Laboratory                                                                |               |       | ry                                             | U.S. Department of Energy   C       | Office of Science |  |  |

![](_page_24_Picture_8.jpeg)

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

# **Pluggable Optics - Other Considerations**

#### **100G Fiber Patches**

- LR10: can generally\* be connected back-to-back without attenuation
- SR10: MPO-terminated parallel MMF for short patches (we haven't tried this)
  - going through patch panels would be messy
  - break-out using 1xMPO to 10xSC octopus cables?

#### CXPs

01/11/11

- high-density, targeting MMF connections
- to be interoperable with CFPs
- active optical cables

![](_page_25_Picture_10.jpeg)

source: [6]

\* check the data sheets for your transceivers or talk to your vendor first, of course

![](_page_25_Picture_15.jpeg)

## **Testing and Measurement**

![](_page_26_Picture_1.jpeg)

October 3rd, 2011, 14:07 Pacific

- First pings across transcontinental 100GigE between two routers
- 41 days left before the start of SC11
  - Want to give users as much time as possible to tune their applications
- Ping is a good first step, need more testing before hand-off to users
  - Transport system shows clean FEC, low BER, optical layer clean
  - We want to drive links at 100% utilization and measure 0 drops
  - Validate QoS, throughput, latency, loss, interoperability, etc.
- How are we going to test seven 100GigE circuits?
  - At this point, work on building/deploying hosts capable of sourcing
     >10Gbps of traffic had begun, still preliminary
  - Do we need a 100GigE hardware tester?

01/11/11

![](_page_27_Picture_1.jpeg)

Could we leverage the 10Gbps systems we already have deployed?

![](_page_27_Figure_3.jpeg)

![](_page_28_Picture_1.jpeg)

Could we leverage the 10Gbps systems we already have deployed?

let's have some fun with routing loops

![](_page_28_Figure_4.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Picture_1.jpeg)

This was a quick solution to saturate the link, can we improve it?

![](_page_30_Figure_3.jpeg)

ESnet

This was a quick solution to saturate the link, can we improve it?

- use policy-based routing for more complex loops still testing UDP
- firewall ACLs for counting packets / bytes to measure loss

![](_page_31_Figure_5.jpeg)

![](_page_32_Picture_1.jpeg)

#### Deployed systems on ANI experimental testbed - source/sink 4x10Gbps

![](_page_32_Figure_3.jpeg)

#### Deployed systems on ANI experimental testbed - source/sink 4x10Gbps

|          |        | 48.6ms RTT, 97.9               | Gbps aggregate          | TCP through      | put with 10 TCF    | P streams          |              |
|----------|--------|--------------------------------|-------------------------|------------------|--------------------|--------------------|--------------|
|          |        | nersc-diskpt-1-v4012:          | 1179.1875 MB /          | 1.00 sec =       | 9891.8010 Mbps     | 0 retrans          |              |
|          |        | nersc-diskpt-1-v4013:          | 1179.2500 MB /          | 1.00 sec =       | 9888.4787 Mbps     | 0 retrans          |              |
|          |        | nersc-diskpt-1-v4014:          | 1179.1875 MB /          | 1.00 sec =       | 9891.1482 Mbps     | 0 retrans          |              |
|          | eth2   | nersc-diskpt-1-v4015:          | 1179.1250 MB /          | 1.00 sec =       | 9891.1581 Mbps     | 0 retrans          | eth2         |
| nersc-   | eth3   | nersc-diskpt-2-v4012:          | 1179.2500 MB /          | 1.00 sec =       | 9891.9494 Mbps     | 0 retrans          | eth3 anl-    |
| diskpt-1 | eth4   | nersc-diskpt-2-v4013:          | 1179.0625 MB /          | 1.00 sec =       | 9891.1580 Mbps     | 0 retrans          | eth4 mempt-1 |
|          | eth5   | nersc-diskpt-2-v4014:          | 1179.3750 MB /          | 1.00 sec =       | 9893.1365 Mbps     | 0 retrans          | eth5         |
|          |        | nersc-diskpt-2-v4015:          | 1179.1250 MB /          | 1.00 sec =       | 9891.0690 Mbps     | 0 retrans          |              |
|          | eth2   | nersc-diskpt-3-v4014:          | 1121.8750 MB /          | 1.00 sec =       | 9410.9602 Mbps     | 0 retrans          | eth2         |
| nersc-   | eth3   | nersc-diskpt-3-v4015:          | 1121.8750 MB /          | 1.00 sec =       | 9410.9884 Mbps     | 0 retrans          | eth3 anl-    |
| diskpt-2 | eth4   | ·                              |                         |                  | · ·                | •                  | eth4 mempt-2 |
|          | eth5   |                                |                         |                  | Input              | Output             | eth5         |
|          |        |                                |                         |                  |                    |                    |              |
|          | eth2   | Octets                         |                         | 18               | 462079             | 12387383345        | eth2         |
| nersc-   | eth3   | Packets                        |                         |                  | 184615             | 1369129            | eth3 anl-    |
| diskpt-3 | eth4   | Errors                         |                         |                  | 0                  | 0                  | eth4 mempt-3 |
|          | eth5   | Utilization (% of port         | capacity)               |                  | 0.17               | 99.31              | eth5         |
| 01.      | '11/11 | Thar                           | iks to Eric Pouyoul, Br | ian Tierney, and | d many others      |                    | 21           |
| L        | awrer  | nce Berkeley National Laborato | ry                      |                  | U.S. Department of | Energy   Office of | Science      |

## **Testing and Measurement**

![](_page_34_Picture_1.jpeg)

|                     | Advantages                                                                                                                                                                                                                                                                                                                           | Disadvantages                                                                                                                                                                                                                                                                                                                                           |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hardware<br>Testers | <ul> <li>stable &amp; robust, tests many protocols</li> <li>40/100Gbps interface speeds</li> <li>test single streams &gt; 10Gbps</li> <li>accurate measurement of loss/reorde</li> <li>very precise control of packet content</li> <li>can source/sink high bandwidth flows consisting of small packets</li> </ul>                   | <ul> <li>TCP implementation at high-BW often no stateful (e.g., no congestion control algorithm), not a good indicator of how an actual end host would perform</li> <li>generally cannot run user applications that interface to the test equipment</li> <li>relatively expensive</li> </ul>                                                            |
| PC-based<br>Testers | <ul> <li>run user applications (data transfer su<br/>as GridFTP, bbFTP, scp)</li> <li>real-world TCP implementation <ul> <li>pluggable TCP congestion control al</li> <li>choice of various measurement and<br/>analysis applications</li> <li>depending on exact configuration, par<br/>capture capabilities</li> </ul> </li> </ul> | <ul> <li>at 100G, requires careful build and tuning</li> <li>host issues due to NIC driver, kernel, interfering user/system processes</li> <li>line-rate flows will have a limit on smallest packet size</li> <li>possibility of bugs in measurement applications</li> <li>accurate measurement problematic – implement counting on hardware</li> </ul> |
| 01/11/11            |                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                                      |
| Lawrence Ber        | keley National Laboratory                                                                                                                                                                                                                                                                                                            | U.S. Department of Energy   Office of Science                                                                                                                                                                                                                                                                                                           |

# **Debugging and Fault Isolation**

![](_page_35_Picture_1.jpeg)

Tracking down loss

- Relatively easy to track down if there are accurate counters
   and the ability to filter on some particular test traffic (e.g. 5-tuple)
- Difficult when there is background traffic and equipment does not
- allow packet counting via ACLs, etc.
- Important to understand where *all* of the "Drop" counters are

#### Tracking down re-ordering

- More difficult (especially if you don't have a hardware tester)
- Some open-source test tools can report on sequence errors or misorders, but there is room for improvement
- Can capture TCP packet dumps, analyze with tcptrace

# **Debugging and Fault Isolation**

![](_page_36_Picture_1.jpeg)

Using loopbacks

- Loopbacks can be very useful in certain situations
- Bring up facility loops facing a layer-3 router on transport equipment
  - ping broadcast address of layer-3 interface
  - check for obvious signs of trouble
  - helpful to verify patching
- If wide-area link is down, bring up loops at termination points to verify patching between layer-3 and transport gear
  - Place loops at re-gen points, check for link up/down on router

## Interoperability

ESnet

Between Layer-2/3 Gear and Optical Transport Equipment

- no issues have arisen
- transport layer is expected to be transparent, so far, it has been

Between Layer-2/3 Equipment and other Layer-2/3 Equipment

- Remember, 100GigE is still very new
- Vendors have chosen slightly different ways of supporting 100G
  - not necessarily optimizing for one single line-rate flow
  - in some cases these have led to challenges in achieving desired performance
  - re-working the way the system is logically configured or physically cabled can potentially have a huge impact
- It is very important to understand exactly how high-bandwidth flows transit your equipment

01/11/11

### Interoperability

![](_page_38_Picture_1.jpeg)

This slide will include our latest findings regarding LR10 interoperability between vendors.

01/11/11

Lawrence Berkeley National Laboratory

26

- Inter-domain, multi-vendor collaboration
- Presented to SCinet WAN team as alien waves at the Westin building in Seattle
- 100Gbps connection to ANI and Internet2
- 100Gbps connection to CANARIE

1 x100GE

01/11/11

NERSC / LBNL

Lawrence Berkeley National Laboratory

- Supported numerous 40/100Gbps demonstrations on ANI and Internet2
  - <u>https://my.es.net/topology/sc11/overview</u>

SUNN

![](_page_39_Figure_7.jpeg)

- Inter-domain, multi-vendor collaboration
- Presented to SCinet WAN team as alien waves at the Westin building in Seattle
- 100Gbps connection to ANI and Internet2
- 100Gbps connection to CANARIE

1 x100GE

01/11/11

NERSC / LBNL

Lawrence Berkeley National Laboratory

- Supported numerous 40/100Gbps demonstrations on ANI and Internet2
  - <u>https://my.es.net/topology/sc11/overview</u>

SUNN

![](_page_40_Figure_7.jpeg)

- Inter-domain, multi-vendor collaboration
- Presented to SCinet WAN team as alien waves at the Westin building in Seattle
- 100Gbps connection to ANI and Internet2
- 100Gbps connection to CANARIE
- Supported numerous 40/100Gbps demonstrations on ANI and Internet2
  - <u>https://my.es.net/topology/sc11/overview</u>

SUNN

![](_page_41_Figure_7.jpeg)

Lawrence Berkeley National Laboratory

NERSC / LBNL

1 x100GE

01/11/11

- Inter-domain, multi-vendor collaboration
- Presented to SCinet WAN team as alien waves at the Westin building in Seattle
- 100Gbps connection to ANI and Internet2
- 100Gbps connection to CANARIE

1 x100GE

01/11/11

NERSC / LBNL

Lawrence Berkeley National Laboratory

- Supported numerous 40/100Gbps demonstrations on ANI and Internet2
  - <u>https://my.es.net/topology/sc11/overview</u>

SUNN

![](_page_42_Figure_7.jpeg)

- Inter-domain, multi-vendor collaboration
- Presented to SCinet WAN team as alien waves at the Westin building in Seattle
- 100Gbps connection to ANI and Internet2
- 100Gbps connection to CANARIE

1 x100GE

01/11/11

NERSC / LBNL

Lawrence Berkeley National Laboratory

- Supported numerous 40/100Gbps demonstrations on ANI and Internet2
  - <u>https://my.es.net/topology/sc11/overview</u>

SUNN

![](_page_43_Figure_7.jpeg)

- Inter-domain, multi-vendor collaboration
- Presented to SCinet WAN team as alien waves at the Westin building in Seattle
- 100Gbps connection to ANI and Internet2
- 100Gbps connection to CANARIE
- Supported numerous 40/100Gbps demonstrations on ANI and Internet2
  - <u>https://my.es.net/topology/sc11/overview</u>

SUNN

![](_page_44_Figure_7.jpeg)

Lawrence Berkeley National Laboratory

NERSC / LBNL

1 x100GE

01/11/11

### **Future Work**

![](_page_45_Picture_1.jpeg)

Near-term: Mixed 10G NRZ with 40G/100G DP-QPSK

- These technologies do not necessarily play nice together [9]
- Kevin McGrattan's talk at Clemson [10] has a lot of detailed background on this topic
- Understand impact in terms of:
  - reach penalty on 100G channels
  - colorless ROADM deployment (with non-coherent wavelengths)

Deployment of Directionless and Colorless ROADM components

Long-term: Flexible Grid?

- Flexible wavelength selectable components
- Super channels at 400Gb/s or 1Tb/s

#### References

![](_page_46_Picture_1.jpeg)

- [1] Roberts, K., Beckett, D., Boertjes, D., Berthold, J., Laperle, C. (2010, July). 100G and Beyond with Digital Coherent Signal Processing. *Communications Magazine, IEEE, 48*(7), 62-69. Retrieved January 16, 2011, from IEEE Xplore database.
- [2] IEEE P802.3ba. http://standards.ieee.org/getieee802/download/802.3ba-2010.pdf
- [3] ITU-T G.709. http://www.itu.int/rec/T-REC-G.709/en
- [4] OIF-FD-100G-DWDM-01.0 100G Ultra Long Haul DWDM Framework Document (June 2009). <u>http://www.oiforum.com/public/documents/OIF-FD-100G-DWDM-01.0.pdf</u>
- [5] 10x10 MSA Revision 2.4. http://www.10x10msa.org/documents/MSA%20Technical%20Rev2-4.pdf
- [6] Finisar C.wire. http://finisar.com/products/active-cables/C.wire
- [7] Digital Coherent Receiver Technology for 100-Gb/s Optical Transport Systems. <u>http://www.fujitsu.com/downloads/MAG/vol46-1/</u> paper18.pdf
- [8] Gringeri, S., Basch, B., Shukla, V., Egorov, R., Xia, T. (2010, July). Flexible Architectures for Optical Transport Nodes and Networks. *Communications Magazine, IEEE, 48*(7), 40-50. Retrieved January 16, 2011, from IEEE Xplore database.
- [9] Magill, P. (2010, September). 100G Coherent trials and deployments: AT&T plans and perspective. *ECOC2010, 36th European Conference and Exhibition on Optical Communication.* Retrieved January 16, 2011, from IEEE Xplore database.
- [10] McGrattan, K. Considerations in Migrating DWDM Networks to 100G. <u>http://events.internet2.edu/2011/jt-clemson/agenda.cfm?</u> go=session&id=10001587
- [11] Drolet, P., Duplessis, L. (2010, July). 100G Ethernet and OTU4 Testing Challenges: From the Lab to the Field. *Communications Magazine, IEEE, 48*(7), 40-50. Retrieved January 16, 2011, from IEEE Xplore database.

01/11/11

Lawrence Berkeley National Laboratory

![](_page_47_Figure_0.jpeg)

Lawrence Berkeley National Laboratory