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Why the need for Configuration
Management Automation?

As a Network Scales:

« So does complexity
Manual configuration becomes impractical and unreliable
Increasing number of devices and roles
Networking staff become specialized in a limited space

Automation forces consistency
Consistency reduces complexity
Humans make mistakes or may choose to not follow rules






Network at Microsoft

* Networking Environment at Microsoft:
* Multiple hardware vendors
» 77 device roles
» Tens of thousands of network devices
» Over 30 million lines of configurations
* This scale would not be possible without automation.

« Most tools and process developed for deployments or monitoring.



Why is Service Management important?

* Improves reliability of our services and avoids data loss
 Great for users!

* Reduces cost
 Allows us to scale headcount sub-linearly with network growth

* Improves time to market
« Better customer experience and faster turnaround



Introducing Standard Enforcement Scripts

 Service Management system used by Microsoft’s Global Networking
Services

* |nitial deployment
e Core and backend networks

* Inspired by others in Microsoft
« Windows Azure Fabric and Autopilot

 Follows “Lights Out” management principles



Improvements we've seen with SES

_

Router Rollout 2-3 days 30 seconds
2-3 engineers 1 engineer
10-20% Errors 0%

Bill of Wrongs ~4-6/mon ~0/month

Change Velocity ~50 a month ~1000/month



Principles: deployment

* Deployment is declarative
» Describe the desired state and SES will figure out how to get there

* Everything on the Network should come through SES
* No manual changes or other systems

* There should never be any end-user downtime during deployments



Principles: repair

« Bake repair into the application design
» Hardware failure is guaranteed and should never require urgent human intervention
« Repair should remove urgency from issues
* You shouldn’t have to completely understand all issues to keep the system running
» Reporting is key
« Keep repair simple — use as few hammers as possible
» Example: minimal set of transformations to bring system into compliance with design rule



Principles: alarming

* Alarming is required in some scenarios
 Drive for non-urgent reporting when possible

* The same instrumentation and brain should be used for alarming and repair
» Triggers for alarm are aware of repairs
* Can move to repair in some cases
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Principles: development lifecycle

 Management is baked into the software development lifecycle (SDLC)
 All assets live in the source control system

» All environments from dev box, through labs to production are deployed, monitored and
repaired in the same way

* Code and test deployment, repair, alarming as part of coding cycle
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Principles: safety

 SES provides a safety net
« Human error should not be able to affect site availability
* The system won’t let buggy code go out
* The system won’t allow an operator to harm the system
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Principles: standardization

« Standardize on small list of SKUs, network configurations, etc
« Hardware is fungible

* Don’t micro-optimize
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Standard Enforcement Scripts
(SES)
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Motivation

« Minimize Cruft
 Design Updates
» Post-Maintenance Verification
« Operational Simplicity
« Limit Variations
 Deployment Efficiency/Accuracy

15



Approach

 Device configurations are a series of configlets
« Comparing a configlet against a standard is easy
 When they do not match; fix it

set system syslog archive size 1m

set system syslog archive files 20

set system syslog user * any emergency

set system syslog host c.d.e.f any info

set system syslog host c.d.e.f kernel notice

set system syslog host c.d.e.f facility-override locall
set system syslog host c.d.e.f explicit-priorit




Logical Design

SES Script

Include Libraries

Dependencies Expected State Conditions

" UserOptions  Read Actual Configuration
" Compare Expected to Actual Configuration

Report or Repair per User Options

17



Libraries

* Functions used by all scripts
» Keeps the scripts lightweight
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Work flow

Device configuration Prefix list

User Interface

Script #1 Scrl #2 Scr| #3 — Scrl #4 mmmm SCHPt #5

Shared Libraries

PASS PASS

i E—

FAIL PASS PASS
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Condition Examples
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RULE:

LOOSE MATCH

Actual configuration

Prefix-list customer 1.3.0.0/17

Expected configuration

Prefix-list customer 123.22.0.0/16

Prefix-list customer 7.33.5.0/24
Prefix-list customer 54.12.0.0/16
Prefix-list customer 20.50.0.0/17
Prefix-list customer 100.99.100.0/23

i

PASS

Prefix-list customer 7.33.5.0/24
—Prefix-list customer 100.99.100.0/23
—Prefix-list customer 54.12.0.0/16

—Prefix-list customer 28.52.0.0/18
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RULE:

STRICT MATCH

Actual configuration

Prefix-list customer 1.3.0.0/17
Prefix-list customer 7.33.5.0/24
Prefix-list customer 54.12.0.0/16
Prefix-list customer 20.50.0.0/17
Prefix-list customer 100.99.100.0/23

Remove:

#‘
v
v
w
v

FAIL

Expected configuration

Prefix-list customer 133.22.0.0/16
Prefix-list customer 7.33.5.0/24
Prefix-list customer 100.99.100.0/23
Prefix-list customer 54.12.0.0/16
Prefix-list customer 28.52.0.0/18

Prefix-list customer 20.50.0.0/17

22



RULE:
STRICT ORDER MATCH

Actual configuration Expected configuration
Prefix-list customer 1.3.0.0/17 Prefix-list customer 133.22.0.0/16
Prefix-list customer 7.33.5.0/24 Prefix-list customer 7.33.5.0/24
Prefix-list customer 54.12.0.0/16 Prefix-list customer 100.99.100.0/23
Prefix-list customer 200.50.0.0/17 Prefix-list customer 54.12.0.0/16
Prefix-list customer 100.99.100.0/23 Prefix-list customer 28.52.0.0/18

Prefix-list customer 28.52,0.0/18 Prefix-list customer 1.3.0.0/17
Remove:

Prefix-list customer

Add:

Prefix-list customer 133.22.0.0/16

Prefix-list customer 7.33.5.0/24

Prefix-list customer 100.99.100.0/23

Prefix-list customer 54.12.0.0/16

Prefix-list customer 28.52.0.0/18

Prefix-list customer 1.3.0.0/17 23



Dependencies

« Multi-part configurations separated into different scripts.

* Example:
» Script 1: peer group
» Script 2: BGP policy
 Script 3: prefix-list
 Script 4: as-path
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Initial deployment

* Initially deployed to audit 4 device roles
« 230 scripts created
 average 60 lines of code each

* 4000+ variations were discovered.
 Variations ranged from cosmetic to situations that could contribute to service impacting events
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Challenges

* Vendors

» Different configuration formats
« Behavior / Functionality
* Initial Cleanup
« Standards can conflict with the current operating state
* Script conflicts
« 2 or more scripts with different outcomes for the same configuration
Script Coverage
* Must account for all configurations to achieve maximum benefit
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Other Use Cases

« Config Generator

* By combining the output of all the template scripts, it is possible to create a base
configuration for a new device

* Framework leveraged for incremental changes
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Questions?

Thank you

- Vgill@microsoft.com
* Dschmidt@microsoft.com
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