Auton

Managemer

Da\/|d SCh 1y, v

Global Networking Services Team, Global Foundation Services
Microsoft Corporation

Microsoft

Why the need for Configuration
Management Automation?

As a Network Scales:

« So does complexity
Manual configuration becomes impractical and unreliable
Increasing number of devices and roles
Networking staff become specialized in a limited space

Automation forces consistency
Consistency reduces complexity
Humans make mistakes or may choose to not follow rules

Network at Microsoft

* Networking Environment at Microsoft:
* Multiple hardware vendors
» 77 device roles
» Tens of thousands of network devices
» Over 30 million lines of configurations
* This scale would not be possible without automation.

« Most tools and process developed for deployments or monitoring.

Why is Service Management important?

* Improves reliability of our services and avoids data loss
 Great for users!

* Reduces cost
 Allows us to scale headcount sub-linearly with network growth

* Improves time to market
« Better customer experience and faster turnaround

Introducing Standard Enforcement Scripts

 Service Management system used by Microsoft’s Global Networking
Services

* |nitial deployment
e Core and backend networks

* Inspired by others in Microsoft
« Windows Azure Fabric and Autopilot

 Follows “Lights Out” management principles

Improvements we've seen with SES

_

Router Rollout 2-3 days 30 seconds
2-3 engineers 1 engineer
10-20% Errors 0%

Bill of Wrongs ~4-6/mon ~0/month

Change Velocity ~50 a month ~1000/month

Principles: deployment

* Deployment is declarative
» Describe the desired state and SES will figure out how to get there

* Everything on the Network should come through SES
* No manual changes or other systems

* There should never be any end-user downtime during deployments

Principles: repair

« Bake repair into the application design
» Hardware failure is guaranteed and should never require urgent human intervention
« Repair should remove urgency from issues
* You shouldn’t have to completely understand all issues to keep the system running
» Reporting is key
« Keep repair simple — use as few hammers as possible
» Example: minimal set of transformations to bring system into compliance with design rule

Principles: alarming

* Alarming is required in some scenarios
 Drive for non-urgent reporting when possible

* The same instrumentation and brain should be used for alarming and repair
» Triggers for alarm are aware of repairs
* Can move to repair in some cases

10

Principles: development lifecycle

 Management is baked into the software development lifecycle (SDLC)
 All assets live in the source control system

» All environments from dev box, through labs to production are deployed, monitored and
repaired in the same way

* Code and test deployment, repair, alarming as part of coding cycle

11

Principles: safety

 SES provides a safety net
« Human error should not be able to affect site availability
* The system won’t let buggy code go out
* The system won’t allow an operator to harm the system

12

Principles: standardization

« Standardize on small list of SKUs, network configurations, etc
« Hardware is fungible

* Don’t micro-optimize

13

Standard Enforcement Scripts
(SES)

14

Motivation

« Minimize Cruft
 Design Updates
» Post-Maintenance Verification
« Operational Simplicity
« Limit Variations
 Deployment Efficiency/Accuracy

15

Approach

 Device configurations are a series of configlets
« Comparing a configlet against a standard is easy
 When they do not match; fix it

set system syslog archive size 1m

set system syslog archive files 20

set system syslog user * any emergency

set system syslog host c.d.e.f any info

set system syslog host c.d.e.f kernel notice

set system syslog host c.d.e.f facility-override locall
set system syslog host c.d.e.f explicit-priorit

Logical Design

SES Script

Include Libraries

Dependencies Expected State Conditions

" UserOptions Read Actual Configuration
" Compare Expected to Actual Configuration

Report or Repair per User Options

17

Libraries

* Functions used by all scripts
» Keeps the scripts lightweight

18

Work flow

Device configuration Prefix list

User Interface

Script #1 Scrl #2 Scr| #3 — Scrl #4 mmmm SCHPt #5

Shared Libraries

PASS PASS

i E—

FAIL PASS PASS

19

Condition Examples

20

RULE:

LOOSE MATCH

Actual configuration

Prefix-list customer 1.3.0.0/17

Expected configuration

Prefix-list customer 123.22.0.0/16

Prefix-list customer 7.33.5.0/24
Prefix-list customer 54.12.0.0/16
Prefix-list customer 20.50.0.0/17
Prefix-list customer 100.99.100.0/23

i

PASS

Prefix-list customer 7.33.5.0/24
—Prefix-list customer 100.99.100.0/23
—Prefix-list customer 54.12.0.0/16

—Prefix-list customer 28.52.0.0/18

21

RULE:

STRICT MATCH

Actual configuration

Prefix-list customer 1.3.0.0/17
Prefix-list customer 7.33.5.0/24
Prefix-list customer 54.12.0.0/16
Prefix-list customer 20.50.0.0/17
Prefix-list customer 100.99.100.0/23

Remove:

#‘
v
v
w
v

FAIL

Expected configuration

Prefix-list customer 133.22.0.0/16
Prefix-list customer 7.33.5.0/24
Prefix-list customer 100.99.100.0/23
Prefix-list customer 54.12.0.0/16
Prefix-list customer 28.52.0.0/18

Prefix-list customer 20.50.0.0/17

22

RULE:
STRICT ORDER MATCH

Actual configuration Expected configuration
Prefix-list customer 1.3.0.0/17 Prefix-list customer 133.22.0.0/16
Prefix-list customer 7.33.5.0/24 Prefix-list customer 7.33.5.0/24
Prefix-list customer 54.12.0.0/16 Prefix-list customer 100.99.100.0/23
Prefix-list customer 200.50.0.0/17 Prefix-list customer 54.12.0.0/16
Prefix-list customer 100.99.100.0/23 Prefix-list customer 28.52.0.0/18

Prefix-list customer 28.52,0.0/18 Prefix-list customer 1.3.0.0/17
Remove:

Prefix-list customer

Add:

Prefix-list customer 133.22.0.0/16

Prefix-list customer 7.33.5.0/24

Prefix-list customer 100.99.100.0/23

Prefix-list customer 54.12.0.0/16

Prefix-list customer 28.52.0.0/18

Prefix-list customer 1.3.0.0/17 23

Dependencies

« Multi-part configurations separated into different scripts.

* Example:
» Script 1: peer group
» Script 2: BGP policy
 Script 3: prefix-list
 Script 4: as-path

24

Initial deployment

* Initially deployed to audit 4 device roles
« 230 scripts created
 average 60 lines of code each

* 4000+ variations were discovered.
 Variations ranged from cosmetic to situations that could contribute to service impacting events

25

Challenges

* Vendors

» Different configuration formats
« Behavior / Functionality
* Initial Cleanup
« Standards can conflict with the current operating state
* Script conflicts
« 2 or more scripts with different outcomes for the same configuration
Script Coverage
* Must account for all configurations to achieve maximum benefit

26

Other Use Cases

« Config Generator

* By combining the output of all the template scripts, it is possible to create a base
configuration for a new device

* Framework leveraged for incremental changes

27

Questions?

Thank you

- Vgill@microsoft.com
* Dschmidt@microsoft.com

28

mailto:Vgill@microsoft.com
mailto:Vgill@microsoft.com
mailto:Dschmidt@microsoft.com

© 2012 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions,
it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

