

What you'll see immediately

- More addresses
 - 340 undecillion
- Bigger, beefier addresses
 - 2001:db8:dead:beef::1
- Lots more addresses per interface
- More "magic"

7 Layer View (Sorta)

Routing Efficiencies

- Fixed header size
- Extension header chain
- Flow labels in header
- No intermediate fragmentation (PMTUD)
- No checksums

Network Efficiencies

- No broadcast
- Multicast
- NS/Solicited Node, no ARP
- ICMPv6

Type/Scope

Address Types

Unicast

Multicast

Anycast

Address Scope

- Link Local
- Global Unicast
- Unique Local
- Transition
- Misc (Site Local, Reserved, Special)

Link Local

Local (broadcast) Domain

• fe80::/64

Similar to APIPA (169.254.0.0/16)

Reusable on all interfaces

Global Unicast

- Globally routable
- Unique
- "Public"
- Use 'em everywhere!

Unique Local

- Not globally routable
- Not unique (but registerable...)
- Replacement for RFC1918 (if you must)

More addresses per interface!

- Use 'em; we'll make more
- Multiple default routes
- Quiescence
- How do it know? (RFC 3484)

Subnet Planning

Sane Subnetting

- You can get enough IPv6 space
 - Do the architecture you want, not the one you're stuck with
 - Use GUA space everywhere, make NAT a choice
 - Map your subnets to your process/provisioning or business model
 - Do a scheme that aggregates and makes ACLs sane

Sample /32 Plan by Geography

- 2001:db8:abcd::/36
 - City: 4 bits = 16 possible locations
- 2001:db8:abcd::/40
 - Hub: 4 bits = 16 possible hubs per city
- 2001:db8:abcd::/48
 - Floor: 8 bits = 256 floors per hub.
- 2001:db8:abcd:12xx::/56
 - Switch: 8 bits = 256 Switches per floor.
- 2001:db8:abcd:1234::/64
 - VLAN: 8 bits = 256 VLANs per switch.

Prefix Lengths

- /48 is minimum routable chunk
- /64 for all non-p2p subnets
- /127 for p2p links (RFC 6164)
- /128 for loopbacks
- Use /64 each for p2p/lb, pair for each routing domain

Use the whole /64!

IPv4 address shortages made pool size precious

IPv6 has plenty

Protect from brute force scans

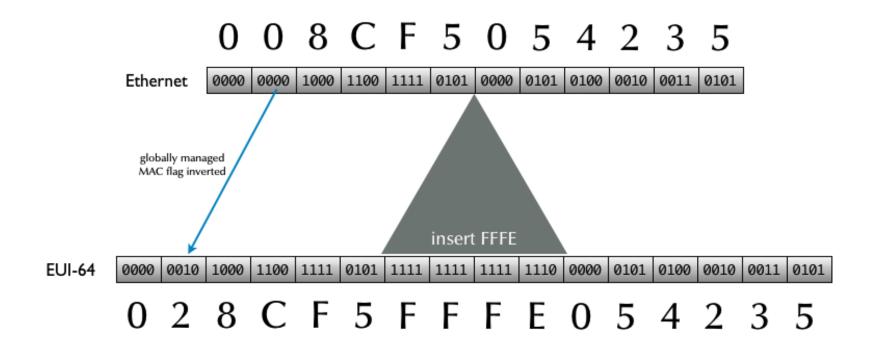
Do pay attention, though...

Multi-homing and PI addresses

- If you qualified in v4, you still do
- If PI space would have been useful in v4, it still is
- If you didn't understand it in v4, v6 won't help you...

SLAAC vs DHCP

SLAAC


SLAAC == StateLess Address AutoConfiguration

- Uses Router Advertisement (RA) messages
- Network policy moved to the edge

Interface ID generation

- EUI-64 uses the mac address and an algorithm to generate interface ID
- Windows7/Vista randomly generates interface ID by default
- Servers and LINUX/UNIX mostly use EUI-64

MAC-Address to Interface ID

SLAAC Sequence

Client configures link-local address

- Generates 64 bit host ID (EUID from MAC, random)
- Uses link local prefix and EUID to generate tentative address (such as fe80::028c:f5ff:fe05:4235)
- Does DAD (Duplicate Address Detection)
 - Sends a multicast Neighbor Solicitation message containing its new tentative address to the solicited node address
 - If no other node responds with a Neighbor Advertisement using that address, the host configures itself with that address

SLAAC Sequence cont.

- Host now looks for Router Advertisement (RA) Messages
 - Sends multicast Router Solicitation message
 - Listens for RA messages
 - Configures itself based on contents of RA message, including doing DHCPv6

RA Message Contents

- Local prefix(es), including A (autonomous address configuration) flag
- Router info
 - Router's link-level address
 - Lifetime of route
 - Router priority
- Flags: M (ManagedAddress) flag and O (OtherConfiguration) flag
- Maximum Transmission Unit (MTU) of upstream link

Not in RA Messages...

- RDNS server
- NTP or "other" configuration
- RFC 6106 for RDNS in RA
 - Lack of client support...

DHCPv6 features

- Not BOOTP! ^③
- No broadcast!
- New ports (546, 547)
- Vendor options in TLV tuples
- Relays don't rewrite packets

Prefix Delegation

- Delegate a prefix to a device
- Device can delegate longer prefixes to its own clients
- Likely scenario is home/CPE routers
- Lots of potential but not lots of gear available now

Reconfigure

Client and server must support and be configured for it

Now has security

 With quiescence and reconfigure, renumbering is easy (mostly)

So much for the good news...

No Choice...

- Must run both RA and DHCPv6 for most sites...
 - No DHCPv6 without an RA message with M or O flag on
 - Many options not available to clients without DHCPv6
 - No default gateway in DHCPv6
 - Must configure DHCP and edges

Failover is so 5 minutes ago

- Drivers in IPv4 for failover:
 - Changing client IP address was user noticeable
 - Lack of large enough pools
- If you use up 18 quintillion addrs...
- Fragility of keeping state
- High availability more useful

Or is it...

Prefix delegation...

Problems/parameters

- # of subnets available for PD small (relatively)
- Changing PDs requires routing changes and reconvergence

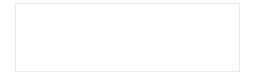
Sound familiar?

DUID > Mac address

- Mac address as ID is flawed:
 - Not always unique
 - Can be altered
 - Multi-interface hosts confuse things
- But it's what most of the eyeballs on the Internet are ID'ed by currently
- DUID (DHCP Unique Identifier) is the replacement in IPv6

What DUIDs do right

- One DUID per DHCP server or client
- One Identity Association (IA) per network interface on a host
- A host can DHCP for all interfaces via DUID/ IA as unique key


Identity Associations

Types:

- IA_TA: temporary address(es), i.e. privacy addrs
- IA_NA: non-temporary address(es), i.e. not privacy addrs
- IA_PD: prefix delegation

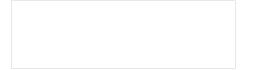
Where DUIDs don't work...

- Anyone using mac address for identification or filtering
- Anyone trying to correlate IPv4 and IPv6 to the same machine/user
- Persistent storage of DUID may cause surprises

ICMPv6

ICMPv6

Required for:


- DAD
- Finding routers (RA/SLAAC)
- Finding servers (DHCP)
- PMTUD
- Connectivity (echo request/response)
- Network errors

ICMPv6 Filtering

 Filter it all and you don't have a useful network

 ICMPv6 much more detailed/precise in types and functions

RFC 4890 has excellent filtering practices

Security

Security

- Most issues much the same as IPv4
- Misconfiguration more likely than malice
- Untested code and lack of experience
- Security vendor claims must be validated

Security improvement claims

 Subnet size makes brute force scanning pointless (if you really use it...)

Privacy addresses

IPSec

Security realities

Bad host numbering schemes

IPSEC:

Good news: just like IPv4

– Bad news: just like IPv4

Exception: Microsoft DirectAccess...

Security homework

- Test all your firewall and security appliances for IPv6
 - ACLs for IPv6
 - Detect various tunneling (ISATAP, Teredo, 6in4, 6to4, etc)
- Make sure all your NMS and logging deal with IPv6, both for transport and data

The Standards Process

We're not done yet

Over 200 RFCs relating to IPv6

 But over 200 drafts in active revision too...

More drafts added every IETF (3 meetings/year)

What can we do?

Participate!

 Make sure your vendors participate and implement the new standards

Pick your battles

Q & A