Telex |Anticensorship in the Network Infrastructure

Eric Wustrow

Scott Wolchok Ian Goldberg^{*} J. Alex Halderman

University of Michigan *University of Waterloo

In Proceedings of the 20th USENIX Security Symposium (2011)

Background | Internet Censorship

No censorship

Some censorship

Country under surveillance from Reporters Without Borders

Most heavily censored nations

Background | Network-based Censorship

Government censors

Block websites containing "offensive" content Commonly employ blacklist approach

Observed techniques

IP blocking, DNS spoofing, forged RST packets

Popular countermeasures

Mostly proxy based — Tor, Freenet, Ultrasurf, ...

Problem: Cat-and-mouse game

Need to communicate proxy addresses to users **but not to censors**, or else they'll be blocked too!

Previous Work | Tor

Previous Work | Tor Bridges

Our Approach | Telex

Operates in the network infrastructure

Components placed at ISP between the censor's network and non-blocked portions of the Internet. We call this end-to-middle proxying

Focuses on **avoiding detection** by the censor Complements anonymity systems such as Tor Employs a form of **deep-packet inspection** Has **no secrets** to communicate to users in advance

Telex | Threat Model

Censor ... controls client's network, but not external network ... blocks according to a blacklist ... allows HTTPS connections to non-blocked sites

Discussion | ISP Cooperation

Why would an ISP deploy Telex? Advance research Government Incentive\$ ISPs in a unique position to help

Details | TLS handshake overview

Details | Telex-TLS Handshake

1. Client starts TLS connection to NotBlocked.com

2. Station recognizes is using private key, but **Censor** can't tell from normal random nonce

Details | Telex-TLS Handshake

3. Client negotiates TLS session key with NotBlocked and leaks it to Station

- -Tag communicates shared secret S to Station
- -Client uses S in place of random coins for key generation
- -Station simulates Client, derives same TLS key

Details | Telex-TLS Handshake

4. Station verifies Finished message from NotBlocked, switches from observer to MITM

- request for blocked content
- 6. Station intercepts, decrypts, and proxies request

Details | Connection Tagging

Application of public-key steganography

Client (anyone) generates tags Station (and <u>only</u> the station) detects tags

Our requirements:

- Short (28 bytes)
- Indistinguishable from random (for the censor)
- Conveys a shared secret
- Fast to recognize (for the station)
- Low false positives

Solution: Diffie-Hellman over elliptic curves ... with a twist!

Telex | Prototype Implementation

Prototype | Flow Diversion

Inline router capable of dropping flows on command (e.g. "stop automatically forwarding for client <>NotBlocked.com")

If DPI gets overloaded, router still forwards normal traffic

Prototype | Tag Recognition

Reconstructs TCP flows, extracts TLS nonces, etc.

Based on Bro for flow reconstruction, fast elliptic curve code Checks 11,000 tags/second-core on 3GHz Intel Core 2 Duo

When tag found, commands router to drop flow, then explicitly forwards packets until end of TLS handshake

Prototype | Proxy Service

Shunts data between client's TLS connection and configurable services

.

Prototype | Telex Client

Forwards arbitrary TCP port via tagged TLS connections

Based on libevent and (modified) OpenSSL

Currently for Windows and Linux

Prototype | Test Deployment

Single Telex Station on lab-scale "ISP" at Michigan

Hosted sites

NotBlocked.telex.cc

Unobjectionable content *

Blocked.telex.cc

Simulated censored site only reachable via Telex

Early experiences

Three authors used Telex for daily browsing for a few months Streamed HD YouTube via PlanetLab node in Beijing Ultimately NotBlocked.telex.cc was blocked in China, but a real deployment would have more than one NotBlocked

Prototype | Users

First 3 weeks | July 18—August 11, 2011

Next Steps | We need your help

- Seeking ISP partners for next research phase: prototype deployment
- Place operational station on (big) pipes at (real) partner ISPs
- Planned architecture: Give us a :443 tap and an inline OpenFlow switch
- Help us engineer performance and reliability at scale

Pioneer operational details and policies

Telex | Conclusion

End-to-middle proxying— New approach to resisting Internet censorship

Focus on hiding use of the service

Based on public-key steganography, repurposes DPI and MITM for *anti*censorship

Proof-of-concept operating today, but wide-scale deployment needs ISP cooperation

Telex | Anticensorship in the Network Infrastructure

https://telex.cc

Eric Wustrow

Scott Wolchok Ian Goldberg^{*} J. Alex Halderman

University of Michigan *University of Waterloo