Programmable Networking is SFW

David Ward

CTO & Chief Architect
Platform Systems Division, Juniper Networks

The Developer and The Network

We should care about each other

Programmable Networking is SFW

JUNIPE.

The Developer and The Network

Improving user experience by programming the network

Real Problems. Real Revenue. Real Attention.

Beyond ferreting the information

Current approximation techniques are barely sufficient and inefficient

APPLICATION WORLD: GUESSING

NETWORK WORLD: DERIVING

Applications blindly probe the network to understand what it can deliver

? Network Aware Applications ?

- Game ping-stats, doppler, geolocation, whois
- Proprietary codecs
- Approximate topology/location

Networks spy on traffic to try to understand applications

? Application Aware Networking?

- Deep Packet Inspection
- Stateful flow analysis
- Application fingerprinting
- Service specific overlay topologies

How to ensure the best experience?

Bringing together the important elements ...

... enabled via real-time interaction to influence the experience of the end user

Application:

Knows end-device capabilities. Proximity of end-user to content. Controls resources.

Content:

Adjusts placement, selection & insertion of content from analytics.

End-User:

Knows what it wants and is directed there

Network:

Real-time interaction between application, content and end-users.

Let's talk about why networks & applications need to work together

What brings the two together?

JUNIPEC.

Interaction at multiple touch points

Extract information or program desired behavior

What is possible in this new world?

Applications made better by information from network

- Understanding of end-device capabilities
- Real location / topology
- Adjust behavior to real-time usage
- Billing granularity

Flexibility of service placement

Networks made better by <u>information</u> from application

- Bandwidth and resource optimization
- New service topologies
- Security identification
- Service-specific packet treatment

Control of resources from applications

How do networks & applications work together?

There's more than what you are hearing

Software Defined Networks

- Separation of existing protocols from forwarding plane for network devices
- Programming of forwarding plane via centralized orchestration platforms

No interaction with existing routing/signaling protocols of the Internet

- Augment what's already
- Integration with routing, signaling and policy logic
- Modular, programmable touchpoints
- Seamless service model via collaborative inputs
- Standards-based approach

Application and network interaction

As a developer you will have many ways to influence the network or application Choices depend on your touch point to the network

How do we make this happen?

Without breaking everything ...

Network intelligence query point	Path computation and establishment	Policy enforcement	Service location
Where is "it" in the network	Path Computation Element (PCE) for determining traffic path and setup	Permit/Deny policy enforcement through programmable flow filters (OpenFlow) / SMI	Centralize/Distributed registration for services, application resources and content cache locations

Orchestration and Development Platforms

Specific functionality for a specific customer set: mobile phone, STB

Network Operators Building Development Platforms

Network operator innovation centers around the world

Platform potential: Reaching ~53% of world population; Equals ~64% of world GDP

Networked application examples

- Content / Service Routing
 - Locate best copy of content for the end user, using customer rules
- Managed content distribution
 - Content prepositioning to caches
 - Live events
- Map-Reduce class of applications
 - High-end distributed computing
- Cloud OS network operations
 - Move VMs / Apps / Storage between locations
- Cloudburst
 - Flexibly, on-demand allocate cloud & network capacity to customers
- Security
 - DDoS attack prevention

What is a Service Engineered Path?

- Packet tunneling/switching technology that provides a preestablished forwarding path to specific service functions
- Technology enables selective traffic redirection based upon ephemeral classifiers
- Signaled paths requested via PCE Path Computation Element
 - Standardized API

Example: service appliance pooling

Pre-SEP Service Appliance Topology

Programmable Networking is SFW

Example: service specific topology

- Subscriber traffic flows may be forced across specific service topologies as dictated by policy
 - Video traffic for one set of subscribers follows a specific path that is engineered to provide the optimal video experience
 - Path enabled using Service Engineered Path technology
 - Non-subscribing enhanced video traffic follows the normal routed path

Example: **Content Request Routing**

From where the user is connected...

This is new because:

- Uses information of the network infrastructure
- Runs across multiple service providers
- Mobile & broadband subscribers

... to where the content is best served

Based on:

- **Network proximity**
- Network availability
- **Network congestion**
- Content availability
- Content load
- Content capacity

Open standard: ALTO **Application Layer Traffic** Optimization

Example: Content Request Routing

Demo Scoreboard – Alto directs traffic based on network Proximity & conditions

Content Routing Demo Scoreboard					
Subscriber Location:	Service Requested:	ALTO Based Network Cost Maps:	Cedexis ADNS Resolves to Location:		
		Chicago - 10 London - 50 Amsterdam - 200	Chicago		
A CONTRACT	Video	Chicago - 10 London - 50 Amsterdam - 200	Chicago		
New York	Downloads	Chicago - 10 London - 50 Amsterdam - 200	Chicago		
	Mobile	London - 10 Amsterdam - 50 Chicago - 200	London		
-	Video	Amsterdam - 10 London - 50 Chicago - 200	Amsterdam		
London	Downloads	Chicago - 10 Amsterdam - 50 London - 200	Chicago		
	Mobile	Amsterdam - 10 London - 50 Chicago - 200	Amsterdam		
	Video	Amsterdam - 10 London - 50 Chicago - 200	Amsterdam		
Paris	Downloads	Chicago - 10 Amsterdam - 50 London - 200	Chicago		

Demo Scoreboard – Alternate datacenter chosen based on Media Flow load metrics

Content Routing Demo Scoreboard					
Subscriber Location:	Service Requested:	ALTO Based Network Cost Maps:	Cedexis ADNS Resolves to Location:		
	Mobile	Chicago - 10 London - 50 Amsterdam - 200	Chicago		
- 17 additional	Video	Chicago - 10 London - 50 Amsterdam - 200	Chicago		
New York	Downloads	Chicago - 10 London - 50 Amsterdam - 200	Chicago		
	Mobile	London - 10 Amsterdam - 50 Chicago - 200	Chicago		
	Video	Amsterdam - 10 London - 50 Chicago - 200	Chicago		
London	Downloads	Chicago - 10 Amsterdam - 50 London - 200	Chicago		
	Mobile	Amsterdam - 10 London - 50 Chicago - 200	Chicago		
	Video	Amsterdam - 10 London - 50 Chicago - 200	Chicago		
Paris	Downloads	Chicago - 10 Amsterdam - 50 London - 200	Chicago		

London and Amsterdam have exceeded the load threshold: Traffic is diverted to Chicago

Mapping The Traffic Delivery

Example: Bandwidth Calendaring

Schedule a reserved path for your session...

Scheduled application/session specific path in the network

... without having to know the network

Technology used:

- Real-time topology understanding (ALTO, BGP-TE)
- Steering traffic through optimal paths (PCE)
- Reservation transaction (WebServices API)
- Selecting specific traffic (OpenFlow)

What would I use this for?

- Flexibility of service placement
- Scheduled data center backups
- Managed content distribution
- Cloud orchestration

Example: Cloud Bursting

Example: Social Networking

Untapped mine of information

- Access technology and capability
 - Mobility events
 - Bandwidth, utilization
- Capabilities of device and network
- Network location
- Proximity to caches / servers
- Bandwidth / billing / usage caps
- Security profile

Tune in - turn on: Be "in the topology"

Weak architecture = one-legged tap dancing

Continuous, real-time streaming of surrounding content, resources, places, people

What did he just say?

UNLEASH THE POTENTIAL!

Today the two worlds are not interlocked

PROGRAMMABLE NETWORKING

DEVELOPMENT PLATFORMS EMERGING AND GETTING A LOT OF VC

Enables:

- Flexibility of service placement
- Fungibility of assets
- Control of resources
- Derivation of telemetry and proximity

Decisions that impact your applications are being made by:

- IT departments
- Network equipment vendors
- Providers delivering your application
- Application developers

Network Programmability

This is not a lottery

This is a game of skill

Enhance your skills

Enhance your applications

