Broadband Internet Performance: A View from the Gateway

Srikanth Sundaresan, Walter de Donato, Stephen Woodrow, Nick Feamster, Renata Teixeira, Antonio Pescapè

http://projectbismark.net

What Performance Do Home Users See?

Access ISPs

- What performance are customers seeing?
- Can they gain better visibility into downtimes?
- Can visibility into problems help reduce service calls?

Content Providers

- How do content routing or traffic engineering decisions affect end user performance
- Also, consumers and regulators

Most Current Approaches: Not Accurate or Continuous

End host measurements are not continuous, and affected by confounding factors

Measurements from the Home Router: Continuous, Direct

Home Network: AT&T DSL
6 Mbps Down, 512 Kbps Up

Last Mile
ISP Network

speedtest.net: 4.4 Mbps, 140 Kbps

Netalyzr: 4.8 Mbps, 430 Kbps

Home Router: 5.6 Mbps, 460 Kbps

Enables periodic measurements, and can account for confounding factors

The BISmark Platform

- OpenWrt firmware with custom measurement suite
 - Periodic active measurements of access link, home network
 - Metrics: Throughput, latency, jitter, packetloss
- Current hardware: Netgear 3700v2 router
 - Planned support for other hardware platforms

Downstream Throughput: AT&T DSL

Downstream Throughput: Comcast

Latency: Comcast Customer

Last-Mile Latency: Comcast

BISmark's Measurements

- Throughput: iperf, netperf, curl, shaperprobe
- Latency: ping, fping, httping
- Other: traceroute, tcptraceroute, paristraceroute, nslookup, D-ITG
- The parameters of each of these tests can be configured at the control server

Customizable Measurements

- Routers periodically download scripts from a central control server
 - Periodic updates over SSL
- Each router could, in theory, run custom tests
 - Upload results to control server

Management and Measurement

- Central control server at Georgia Tech
 - Listens for periodic heartbeats from routers
 - Pushes configuration updates, on-demand test scripts
 - Receives measurement data
 - Stores in postgres database for network dashboard
- Measurement servers
 - In Georgia Tech, University of Napoli, University of Cape Town
 - Measurement Lab servers to be commissioned soon

BISmark: Hardware and Software

- Firmware
 - OpenWrt, with luci web interface
 - IPv6-capable
- Netgear 3700v2 router
 - Atheros chipset
 - MIPS processor, 16 MB flash, 64 MB RAM
 - Gigabit ethernet
 - 2.4 GHz and 5 GHz radio

Case Study 1: Traffic Shaping

Short-term throughput significantly different from sustainable throughput

Case Study 2: Last-mile Latency

DSL last-mile latencies can be high

Case Study 3: Modem Buffers

Modem buffers can introduce significant latency

State of BISmark Deployment

- 20+ nodes in U.S., 10+ in South Africa
 - Currently shipping to U.S. locations
- Plans to deploy in Europe and Asia
- Support for TP-Link 1043 and Atom forthcoming

Ongoing Work

- A view from the edge for transit and access ISPs
 - Effect of peering on performance
 - IPv6 performance
 - Effect of CDN location, traffic engineering on application performance
 - Want to help? Need server deployments!
- Understand home networks better
 - Effect of wireless
 - When is the problem not the ISP's fault?

Get Involved!

- Host BISmark routers
 - Get a high-end wireless router for free!
- Host measurement servers
 - Geographic diversity is important for reliable measurements
- Contribute measurement tests
 - Open-source, capability to run on-demand scripts
 - All code is currently available at http://github.com/bismark-devel

http://projectbismark.net bismark-core@projectbismark.net srikanth@gatech.edu