Broadband Internet Performance:
A View from the Gateway

Srikanth Sundaresan, Walter de Donato,
Stephen Woodrow, Nick Feamster,
Renata Teixeira, Antonio Pescapè

http://projectbismark.net
What Performance Do Home Users See?

- **Access ISPs**
 - What performance are customers seeing?
 - Can they gain better visibility into downtimes?
 - Can visibility into problems help reduce service calls?

- **Content Providers**
 - How do content routing or traffic engineering decisions affect end user performance

- Also, consumers and regulators
Most Current Approaches: Not Accurate or Continuous

Home Network: AT&T DSL
6 Mbps Down, 512 Kbps Up

Last Mile
ISP Network

speedtest.net: 4.4 Mbps, 140 Kbps
Netalyzr: 4.8 Mbps, 430 Kbps

End host measurements are not continuous, and affected by *confounding factors*
Measurements from the Home Router: Continuous, Direct

Home Network: AT&T DSL
6 Mbps Down, 512 Kbps Up

Last Mile

ISP Network

speedtest.net: 4.4 Mbps, 140 Kbps
Netalyzr: 4.8 Mbps, 430 Kbps
Home Router: 5.6 Mbps, 460 Kbps

Enables periodic measurements, and can account for confounding factors
The BISmark Platform

- OpenWrt firmware with custom measurement suite
 - Periodic active measurements of access link, home network
 - Metrics: Throughput, latency, jitter, packetloss
- Current hardware: Netgear 3700v2 router
 - Planned support for other hardware platforms
Downstream Throughput: AT&T DSL

http://networkdashboard.org
Downstream Throughput: Comcast

http://networkdashboard.org
Latency: Comcast Customer

http://networkdashboard.org
Last-Mile Latency: Comcast

http://networkdashboard.org
BISmark’s Measurements

• **Throughput:** iperf, netperf, curl, shaperprobe
• **Latency:** ping, fping, httping
• **Other:** traceroute, tcptraceroute, paris-traceroute, nslookup, D-ITG
• The parameters of each of these tests can be configured at the control server
Customizable Measurements

• Routers periodically download scripts from a central control server
 – Periodic updates over SSL

• Each router could, in theory, run custom tests
 – Upload results to control server
Management and Measurement

• Central control server at Georgia Tech
 – Listens for periodic heartbeats from routers
 – Pushes configuration updates, on-demand test scripts
 – Receives measurement data
 – Stores in postgres database for network dashboard

• Measurement servers
 – In Georgia Tech, University of Napoli, University of Cape Town
 – Measurement Lab servers to be commissioned soon
BISmark: Hardware and Software

• Firmware
 – OpenWrt, with luci web interface
 – IPv6-capable

• Netgear 3700v2 router
 – Atheros chipset
 – MIPS processor, 16 MB flash, 64 MB RAM
 – Gigabit ethernet
 – 2.4 GHz and 5 GHz radio
Case Study 1: Traffic Shaping

Short-term throughput significantly different from sustainable throughput
Case Study 2: Last-mile Latency

DSL last-mile latencies can be high
Case Study 3: Modem Buffers

Modem buffers can introduce significant latency

10 seconds!
State of BISmark Deployment

• 20+ nodes in U.S., 10+ in South Africa
 – Currently shipping to U.S. locations
• Plans to deploy in Europe and Asia
• Support for TP-Link 1043 and Atom forthcoming
Ongoing Work

• A view from the edge for transit and access ISPs
 – Effect of peering on performance
 – IPv6 performance
 – Effect of CDN location, traffic engineering on application performance
 – Want to help? Need server deployments!

• Understand home networks better
 – Effect of wireless
 – When is the problem not the ISP’s fault?
Get Involved!

• Host BISmark routers
 – Get a high-end wireless router for free!

• Host measurement servers
 – Geographic diversity is important for reliable measurements

• Contribute measurement tests
 – Open-source, capability to run on-demand scripts
 – All code is currently available at http://github.com/bismark-devel
http://projectbismark.net
bismark-core@projectbismark.net
srikanth@gatech.edu