Network Capacity Planning

D. Fisher
NANOG52
June 15th, 2011
Introduction

• About Me
 – Lead Engineer of a team in Verizon whose primary focus is capacity planning data network(s) by utilizing Traffic Engineering principals.
 – Contact Information
 • Duke.Fisher@verizonbusiness.com
Capacity Plan for What?

- Do you care how your network routes traffic?
- Is the performance your customer receives important?
- Are packet drops or high latency acceptable?
- Then basic fundamentals of Network Capacity Planning are for you.
Focus for Capacity Planning

• Network Capacity Planning is a large topic, for today’s discussion we will focus on traffic performance
• Performance on network
 – The traffic or demand flow across your network
 • What happens when a failure (link, card, node) occurs
 • What if I change admin cost, or take advantage of a new routing protocol?
Failure Scenarios

• A simulation tool is necessary to enable proper prediction of network performance during failure scenarios.
 – Variation in scenarios include single link failure to whole router failure.
 – A tool, for example, will allow one to see the influence a failure on the east coast has to routers on the west coast.
 – Instead of over-engineering the network to protect against failure, only place capacity where you need it when you need it. Maximize your $ money.
Failure Scenarios

Routing During Stable State (No Failure)

A link Failure causes the route to change. How does this effect the network? (capacity, latency, etc..)
What-If Scenarios

• If you can dream it, a tool can help you see it.
 – You can create a sandbox with your network to see how it will respond to new situations.
 • How will a new customer or peering traffic effect the network?
 • What if I add MPLS capability to the network, and what different things can it do?
 • How much latency will my customer experience if I change metric costs?
What-If Example

• Example utilizing the WANDL tool
 – IGP merge two networks
 • Network A is a very large, many routers, global network, OSPF and MPLS enabled.
 • Network B is a global network, less routers but big pipes, OSPF and MPLS enabled.
 • Goal is to merge the two networks at the OSPF level where Net-B will function as the backbone for Net-A.
 – Problem
 • How do we set the OSPF / MPLS features to ensure the traffic from Net-A flows across Net-B and not the opposite.
 • The OSPF design of Net-A is inherently lower then Net-B; once the merge is implemented, all the traffic on Net-B would be sucked into Net-A.
 – Solution
 • Utilize the WANDL tool to redesign the OSPF for Net-A so it prefers to use Net-B as backbone.
What-If Example

Network B

Network A
Thanks