| Operation | al C | onsider | ration | is for |
|-----------|------|---------|--------|--------|
| Deploying | 100  | Gigabi  | it Eth | ernet  |

## NANOG51

Brent van Dussen, Limelight Networks <bvd@llnw.com>

Greg Hankins, Brocade <ghankins@brocade.com>

NANOG51 2011/01/31

## Agenda

- What problems does 100 GbE solve?
- 100 GbE Technology Update
- Operational Considerations

## What problems does 100 GbE solve?

- Higher capacity interfaces beyond 10 GbE
  - Core, edge, metro, HPC and data center applications
- General and vendor-specific LAG and ECMP issues
  - Scalability
  - Manageability
  - Hashing
  - Large flow distribution
- Side effects
  - Lower cost and higher density 10 GbE
  - Higher bandwidth enables new applications

## LAG and ECMP Issues

- Often a great solution but doesn't solve every bandwidth capacity problem
  Scalability issues apply to apy link speed
  - Scalability issues apply to any link speed
- Limitations on number of LAGs and number of links in a LAG
  - CPU resources are needed to run LACP which limits the number of LAGs per router
  - Extremely complex hashing algorithms are needed to scale number of links in a LAG

# LAG and ECMP Issues

- Hashing is usually decoupled from link capacity
  - Links have no way to signal that they are full
  - Huge flows could exceed the capacity of the link in a LAG (rarely seen today with 10 GbE)
  - Lots of large flows could exceed the capacity of the link in a LAG if hashing breaks
- Hashing algorithm problems
  - Odd links
  - Too simple
  - Unable to hash on fields deep in the packet (MPLS VPNs)
- Even a good hashing algorithm hashes badly without header field diversity

## Agenda

- What problems does 100 GbE solve?
- 100 GbE Technology Update
- Operational Considerations

## Recent 100 GbE Developments

- Shipping 1st generation media, test equipment, router interfaces, and optical transport gear in 2010/2011
- 2nd generation projects based on 4 x 25 Gb/s electrical signaling have started
- New IEEE Copper Study Group approved in November 2010
  - IOOGBASE-KR4 4 x 25 GB/s over backplane
  - IOOGBASE-CR4 4 x 25 Gb/s over copper cable
  - <u>http://www.ieee802.org/3/100GCU/index.html</u>

## Recent 100 GbE Developments

- MSA formed in December, 2010 to develop a 100 GbE CFP standard using 10 x 10 Gb/s signaling over 2 km SMF
  - Much lower cost than 4 x 25 Gb/s 100GBASE-LR4 CFPs
  - Draft standard is finished, final standard expected in March, 2011
  - 2 km, 4 km and 10 km media available today
  - <u>http://10x10msa.org/</u>
- IEEE is expected to start work in July, 2011 to define several interfaces
  - IOOGBASE-SR4 4 x 25 Gb/s over OM3 MMF
  - 100GBASE-FR4 4 x 25 Gb/s over SMF for 2 km
  - CAUI-4 electrical signaling to the CFP2
  - CPPI-4 electrical signaling to the QSFP2/CFP4

## **100 GbE Technology Summary** 1<sup>st</sup> and 2<sup>nd</sup> Generation, MSA

| Physical<br>Layer<br>Reach | 1? m<br>Backplane | 3 - 5? m<br>Copper<br>Cable | 7 m<br>Copper<br>Cable  | <i>100</i> ? m<br>OM3 MMF | 100 m<br>OM3,<br>150 m<br>OM4 MMF | 2  <br>SA         | km<br>ΛF         | 10 kn                | n SMF                     | 40 km<br>SMF               |
|----------------------------|-------------------|-----------------------------|-------------------------|---------------------------|-----------------------------------|-------------------|------------------|----------------------|---------------------------|----------------------------|
| Name                       | 100GBASE<br>-KR4  | 100GBASE<br>-CR4            | 100GBASE<br>-CR10       | 100GBASE<br>-SR4          | 100GBASE<br>-SR10                 | 10x10             | 100GBASE<br>-FR4 | LR10-10k<br>m        | 100GBASE<br>-LR4          | 100GBASE<br>-ER4           |
| Standard<br>Status         | Future<br>IEEE    | Future<br>IEEE              | 2010<br>IEEE<br>802.3ba | Future<br>IEEE            | 2010<br>IEEE<br>802.3ba           | 2011<br>10x10 MSA | Future<br>IEEE   | Exceeds<br>10x10 MSA | 2010<br>IEEE<br>802.3ba   | 2010<br>IEEE<br>802.3ba    |
| Generat-<br>ion            | 2 <sup>nd</sup>   | 2 <sup>nd</sup>             | 1 <sup>st</sup>         | 2 <sup>nd</sup>           | 1 <sup>st</sup>                   | 1 <sup>st</sup>   | 2 <sup>nd</sup>  | 1 <sup>st</sup>      | 1 <sup>st</sup>           | 1 <sup>st</sup>            |
| Electrical<br>Signaling    | 4 x 25 Gb/s       | 4 x 25 Gb/s                 | 10 x 10 Gb/<br>s        | 4 x 25 Gb/s               | 10 x 10 Gb/<br>s                  | 10 x 10 Gb/<br>s  | 4 x 25 Gb/s      | 10 x 10 Gb/<br>s     | 10 x 10 Gb/<br>s          | 10 x 10 Gb/<br>s           |
| Media<br>Signaling         | 4 x 25 Gb/s       | 4 x 25 Gb/s                 | 10 x 10 Gb/<br>s        | 4 x 25 Gb/s               | 10 x 10 Gb/<br>s                  | 10 x 10 Gb/<br>s  | 4 x 25 Gb/s      | 10 x 10 Gb/<br>s     | 4 x 25 Gb/s               | 4 x 25 Gb/s                |
| Media<br>Type              | Backplane         | Twinax                      | Twinax                  | MPO<br>MMF                | MPO<br>MMF                        | Duplex<br>SMF     | Duplex<br>SMF    | Duplex<br>SMF        | Duplex<br>SMF             | Duplex<br>SMF              |
| Media<br>Module            | Backplane         | QSFP2                       | СХР                     | QSPF2                     | CXP,<br>CFP                       | CFP               | CFP2             | CFP                  | CFP                       | CFP                        |
| Availa-<br>bility          | 2013              | 2013                        | 2010                    | 2013                      | 2010                              | Q1 2011           | 2013             | Q1 2011              | 2010<br>(CFP2 in<br>2013) | 2012+<br>(CFP2 in<br>2013) |

9

## **100 GbE Market Overview** CFP Optics

| Physical Layer<br>Reach          | 100 m OM3,<br>150 m OM4<br>MMF | 2 km <sup>(*)</sup><br>SMF | 10 km<br>SMF |                     |
|----------------------------------|--------------------------------|----------------------------|--------------|---------------------|
| Media Module                     |                                |                            | ~ ~ ~        | A REAL PROPERTY AND |
|                                  | 100GBASE-SR10                  | LR10-4km                   | LR10-10km    | 100GBASE-LR4        |
| Media Type                       |                                |                            |              |                     |
|                                  | MPO MMF                        | Duplex SMF                 | Duplex SMF   | Duplex SMF          |
| Power (W)                        | 6                              | 14                         | 15           | 20                  |
| Availability                     | Now                            | Now                        | Now          | Now                 |
| Sample<br>Relative List<br>Price | \$                             | 5.3 x \$                   | 8.3 x \$     | 11.6 x \$           |

(\*) 2 km MSA standard, some vendors support longer distances

#### **100 GbE Market Overview** Router Interfaces and Media

Vendor **Product Line** Feature Set **CFP** Media Alcatel-LR10-10km, L2, IP, MPLS 100GBASE-LR4 Lucent 7450 ESS, 7750 SR 100GBASE-SR10, LR10-4km, **Brocade** L2, IP, MPLS LR10-10km, 100GBASE-LR4 MLX/XMR Series Cisco IP, MPLS 100GBASE-LR4 CRS-3 Juniper IP, MPLS 100GBASE-LR4 T1600, TX Matrix Plus

## Optical Transport Network (OTN) Support

- IEEE has worked closely with the ITU-T SG15 to define interoperable Ethernet and optical transport standards
- Transport for 40 and 100 GbE is defined in ITU-T G.709 (Amendment 3, October 2009)



## Agenda

- What problems does 100 GbE solve?
- 100 GbE Technology Update
- Operational Considerations

## **Motivational Drivers**

- General rule of thumb that's surfaced
- Time to upgrade when...
  - Edge hosts come online with interface speeds equal to the highest interface speed on the network
  - Bandwidth over aggregated links 2-3x greater than max bandwidth of new interface technology
- On one hand we have huge hosts/flows that spike individual 10G LAG members
- With huge LAGs we end up spending more and more time installing and maintaining individual member interfaces

## **Technical Considerations**

- Using SR10 is going to be limited to wherever MPO MMF is available
- Limits use to runs between routers in the same cage or from router to optical gear in the same cage
- LR4 vs. LR10

## Benefits

- Significant man hours saved installing and supporting the same amount of bandwidth
- Cross-connect costs reduced
- Router density increased immediately ~20%, extending platform life
- No longer pushing up against vendor max number of LAG member limitations

## Where Do We Need 100 GbE?

- Connectivity between various facilities in a city using optical gear and dark fiber
- Connectivity between routers in a particular facility to maintain core capacity
- Peering exchanges and PNIs with larger networks
- Backbone between city pairs

## 100 GbE Over Optical Gear

- Client and line facing cards available since early 2010
- 100GBASE-SR10 and 100GBASE-LR4 available for client ports
- Still uses standard 50 GHz spacing
- 88 channel filters makes for 8800 Gb/s over existing dark fiber pairs
- Shelf density of 100 G not as good as current 10 G
- Next iteration of 100 G will match or surpass 10 G shelf density

# Thanks Questions?

19